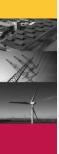


Power System Engineering and Software **DIgSILENT Pacific**

POWERFACTORY SOFTWARE I COMPLIANCE TESTING I CONSULTING SERVICES

Transmission and distribution planning studies Co-generator compliance studies Wind and solar power integration studies Industrial system design and protection coordination Large system eigenvalue/small signal stability studies Harmonic and voltage flicker studies Excitation system modelling and design Generator compliance and R2 testing PowerFactory monitor PowerFactory training and support

DIgSILENT Worldwide


A brief history of DIgSILENT Software

DIgSILENT PowerFactory & StationWare

1985: First commercial power system analysis software (Unix, M.Schmieg)
1995: Final release DIgSILENT 10.31
1998: DIgSILENT *PowerFactory* 11.0
2000: DIgSILENT *PowerFactory* 12.0
2001: DIgSILENT opens new offices in Gomaringen, Germany
2003: DIgSILENT *PowerFactory* 13.0
2005: DIgSILENT introduces *StationWare*2008: DIgSILENT *PowerFactory* 14.0
2011: DIgSILENT *PowerFactory* 14.1

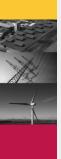
PowerFactory Installations in more than 100 countries; > 10,000 licenses

DIgSILENT Pacific

- Established in Australia in 2001
- Offices in Melbourne, Perth and Brisbane
- Total staff: 27
- Professional engineers: 22
- Our backgrounds
 - Transmission & distribution grid & controls planning
 - Generation control systems design
 - Renewable energy
 - Primary and secondary engineering

DIgSILENT Pacific

- Activities
 - PowerFactory support and training
 - Power system studies
 - Generation control systems design
 - Large emphasis on renewable energy
 - Generator, AVR and governor compliance testing services

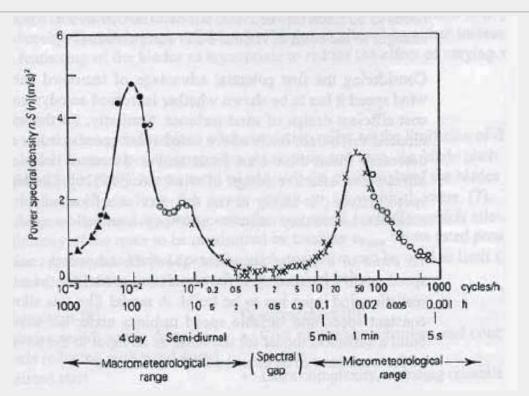


- PowerFactory in Australasia
 - More than 100 PowerFactory user organisations in Australasia
 - More than 1,000 PowerFactory licenses sold locally
 - Many islanded networks applications Example: mine sites in remote regions of Australia
 - Case 1: New Zealand: PowerFactory a standard in New Zealand for Transmission, Distribution, Generation and Regulatory authorities.

- Definitions:
 - Island network
 - Vary in size
 - Vary in generation mix (diesel turbines/reciprocating engines; hydro; steam)
 - Different networks may have different issues
 - Renewables
 - Typically refer to wind generation
 - Normally includes PV solar
 - Biomass; hydro

• The power system control issue

Controlled parameter	Short term	Medium term	Long term
	(~ 1sec)	(~ 5 sec – 1 min)	(~ 15 min – 1 hr)
Voltage (Reactive power)	AVR	Taps	Switching
Frequency (Active power)	Inertia	Governor & UFLS	S Dispatch

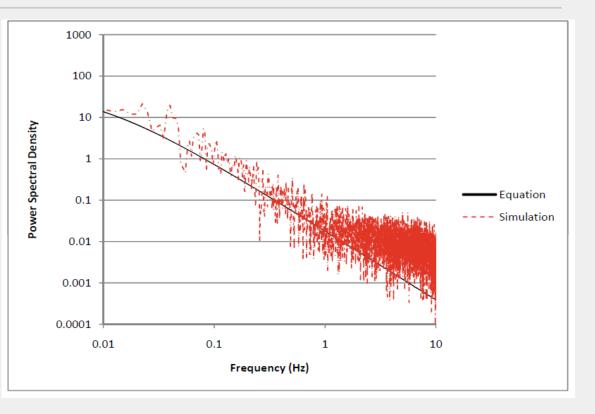


- What is unique about island systems?
 - Often diesel generators with relatively low inertia are used
 - Diesel generators must operate at rated capacity to avoid glazing of pistons
 - Wind and solar replacing conventional generators would further reduce inertia
 - Wind generation can introduce power oscillations that may lead to instability and damage to plant in extreme cases
 - Note: Other normal power system issues that apply for all grids are not explicitly discussed, but also applies



- Wind (and Solar) Generation
 - Power oscillations not present in conventional generation
 - Wind gusts/turbulence
 - Cloud movement across solar farm
 - Conventional power controllers are slow

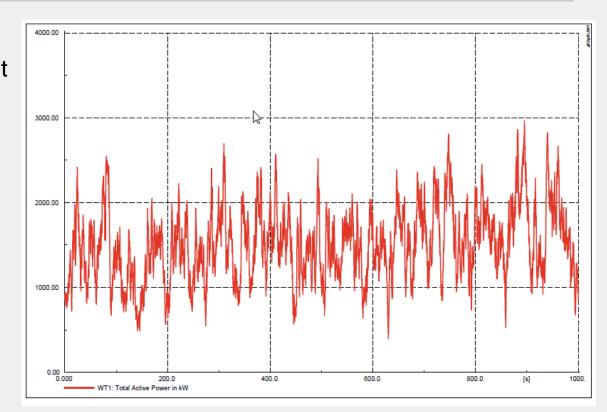
Source: T Burton, D Sharpe, N Jenkins & E Bossanyi. Wind Energy Handbook


- To consider power oscillations on a power system:
 - Dynamic models of generation and load must be accurately modelled
 - Wind turbulence is stochastic described in terms of power spectral density (PSD)
 - Kaimal spectrum is commonly used

$$S_t(f) = \frac{\sigma^2 L}{2v_{w0} (1 + \frac{3Lf}{2v_{w0}})^{\frac{5}{3}}}$$

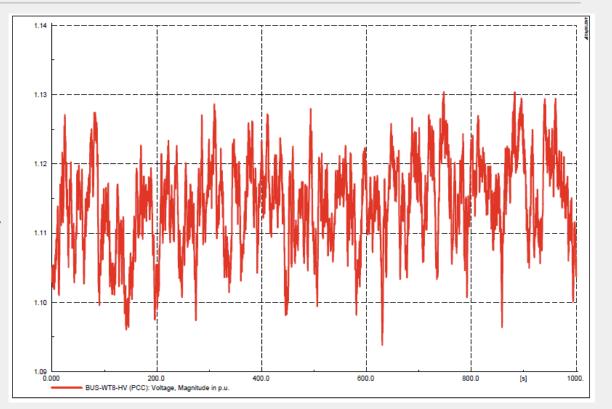
- Where: L = turbulence length-scale
- Often use (conservative) 9 m/s mean wind speed and 12 % turbulence intensity

Island Dynamic Modelling - Example


- Figure compares simulation vs theoretical wind model
- Models to consider:
 - Blade aero dynamics
 - Turbine gearbox and shaft
 - Tower shadow effect
 - Turbine control system

Island Dynamic Modelling - Example

- Simulated wind turbine power output due to wind turbulence
- Full scale: 1,000 seconds
- Power output: 600 kW – 3,000 kW
- Result: frequency variation – depending on system inertia



DIgSILENT Pacific - Island dynamic modelling

Island Dynamic Modelling - Example

- Simulated voltage at PCC
- Full scale: 1,000 seconds
- Voltage range: 1.05 – 1.13 (depends on power system fault level)

- PowerFactory functionality used:
 - Ease of dynamic modelling; not reliant on default models
 - Proven accuracy of results
 - Lots of world-wide studies in the area of wind many examples
 - Powerful instrumentation including FFT for frequency domain representation
 - Much R & D in renewables conducted in Europe commonly uses PowerFactory software
 - Very strong support locally
 - De facto standard for power system modelling in New Zealand.

- Conclusion
 - Very easy to develop custom user defined models
 - Strong regional user base
 - Highly accurate models: Results match actual measurement
 - Leads to increased investment confidence