
Overview of Policies on Geothermal Development in Japan

21th November, 2013 Hidenori Yonekura Agency for Natural Resources and Energy Ministry of Economy, Trade and Industry of Japan

1. Advantages of geothermal power generation (3 Merits)

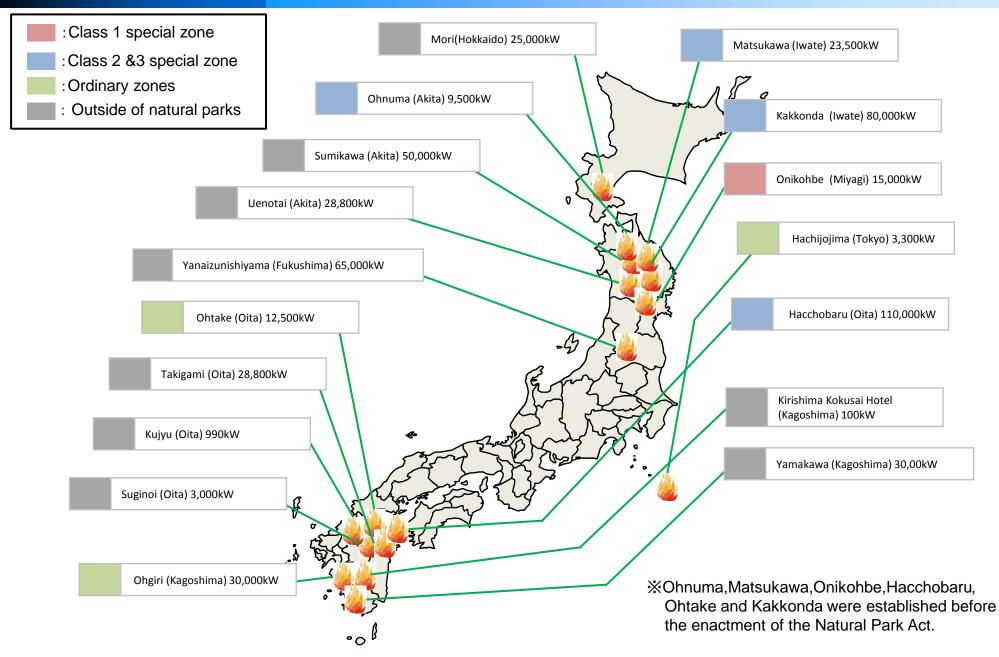
- a. Near-zero CO2 emission during power generation- helps prevent global warming
- b. Outstanding capacity factor and output stability, compared with other renewable energies
- c. Japan has the world's 3rd biggest potential for geothermal resources

CO2 emission per unit of power generation

Photovoltaic	12%
Wind	20%
Geothermal	80%

Capacity utilization ratio by power source (approx.)

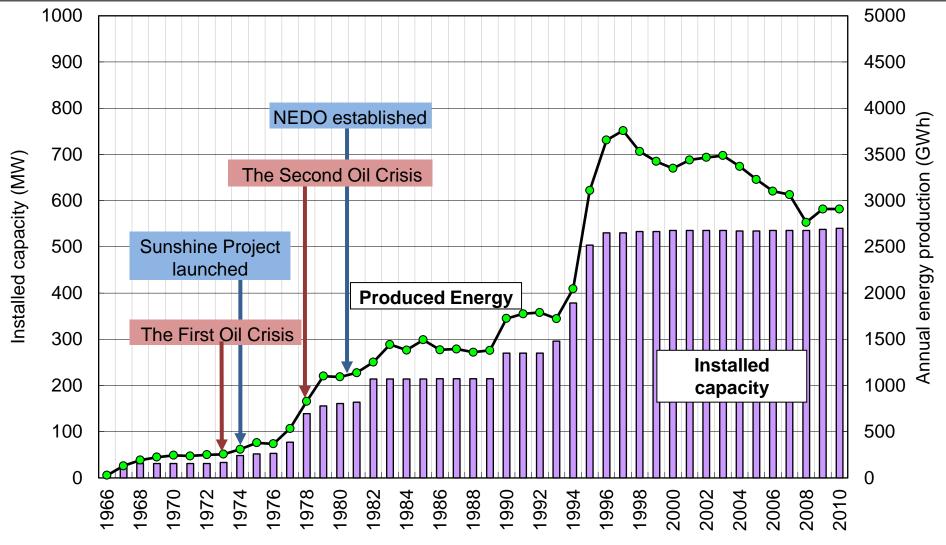
Lifecycle CO2 emission volume [g-CO2/kWh(at power transmission end)]


Data regarding nuclear power are from "Evaluation of nuclear power generation technologies based on life cycle CO2 emissions (August 2001)" by the Central Research Institute of Electric Power Industry. Data regarding other power sources are from "Evaluation of power generation technologies based on life cycle CO2 emissions (March 2000)" by the Central Research Institute of Electric Power Industry.

International comparison of geothermal resource volume

Country	Number of Active volcanos	Geothermal Resource volume (MWe)
USA	160	30,000
Indonesia	146	27,790
Japan	119	23,470
Philippines	47	6,000
Mexico	39	6,000
Iceland	33	5,800
New Zealand	20	3,650
Italy	13	3,270

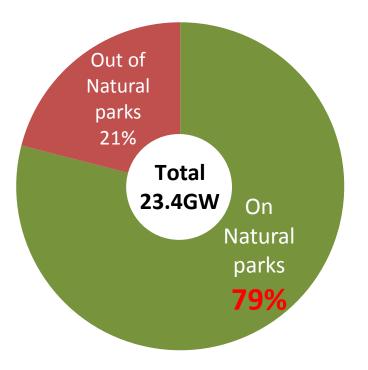
2. Current geothermal development in Japan


(17 plants, installed capacity of approx. 520 MW)

2. Current geothermal development in Japan

(Installed capacity and produced energy)

• No power plant has made since 1999. But the Tohoku earthquake and resulting nuclear accident have accelerated the growing interest in renewable energy including geothermal.



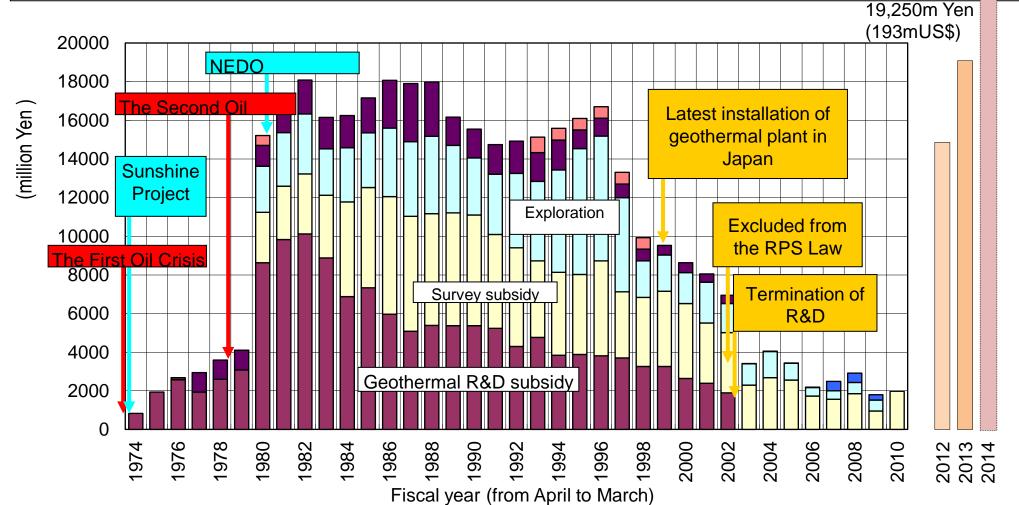
Fiscal year (from April to March)

2.Current geothermal development in Japan

(Energy potential of geothermal in Japan)

- Approximately 80% of energy potential of geothermal is located on natural parks determined by Natural Parks Act in Japan.
- So far geothermal plants have mainly been developed on out of these natural parks.

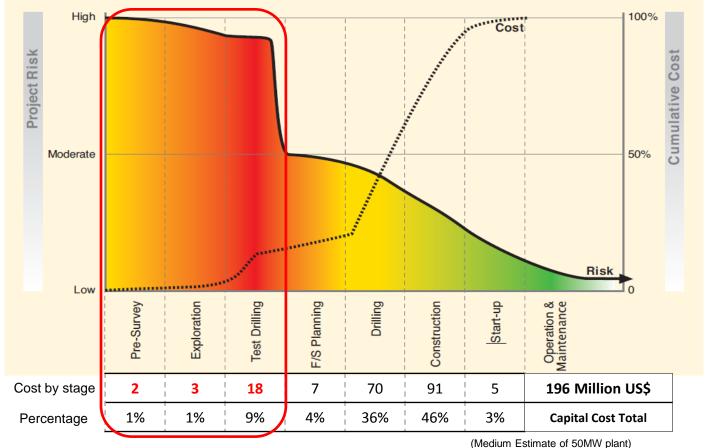
Distribution of Geothermal Energy Potential in Japan


Classification of Natural Parks	Energy Potential(MW)
Special Protection Zone	7,000
Special Zone (I ~ III)	10,300
Ordinary Zone	1,100
Other than Natural Parks	5,000
Total	23,400

Source: AIST (2011)

31,870m Yen (319mUS\$)

(Past budget for geothermal development)


- Geothermal R&D budget was terminated in 2002.
- RPS(Renewable Portfolio Standard) started from 2003 but geothermal was excluded fro the target of the Law. (but binary type was included)

3. Current geothermal development in Japan

(Special risk on geothermal development)

- Geothermal development has specific risk such as drilling risk, opposition from region and steam reduction.
- Appropriate governmental support to reduce these specific risk is necessary for the dissemination of geothermal power plants.

Source:Geothermal Handbook (The world bank)

The Government will promote geothermal development.

Japan Revitalization Strategy -JAPAN is BACK-

(Cabinet decision on June 14, 2013)

2. Strategic Market Creation Plan

Theme 2: Realizing clean and economical energy demand and supply

(2) Individual envisioned societies and efforts toward realization

[1] A society where clean and economical energy is supplied

II) Direction toward solution, strategic areas (markets and industries) and immediate key policy actions

ORegulatory and institutional reform, etc. to introduce renewable energy

 The government will increase investment to geothermal generation. The government will promote regulatory and institutional reform including streamlining the procedure of environmental impact assessments (usually procedures take three to four years hence, reduce the period by half) and streamlining safety regulations to promote small geothermal generation using existing hot spring wells, and promote understanding of local people.

http://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/en_saikou_jpn_hon.pdf

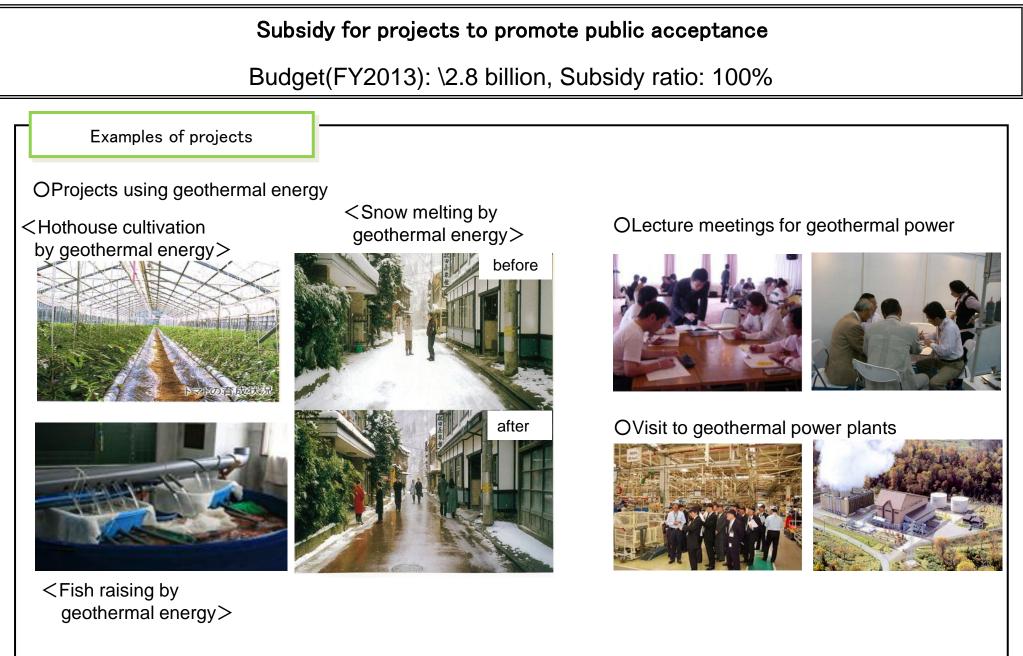
1.Risk Reduction

Geothermal development needs significant. Also it takes more than 10 years before starting plant operation.

- -Minimization of the risk by drilling
- -Drilling cost reduction
- -Shortening lead time

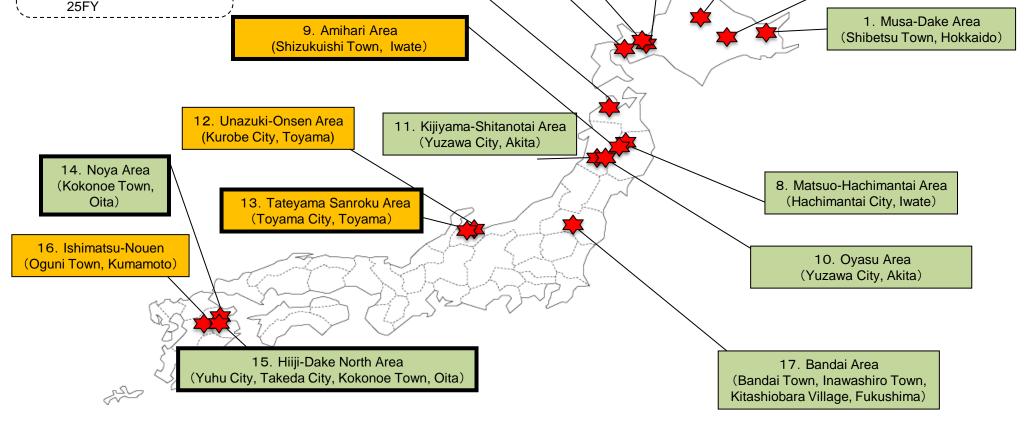
2.Public Acceptance

- -Japan has a cultural heritage of hot springs. Hot spring enterprises tend to be against geothermal development, concerned about effects to their hot spring resources.
- -Geothermal resources often exist in national parks. Environment-friendliness and harmonization with local scenery development is important.


3.Research and Development

- -Techniques for searching for fractures
- -Reservoir management technologies
- -Environment-friendly and high performance power generating systems

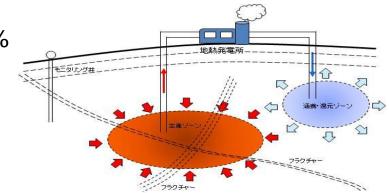
4. Governmental support (FY 2013 budget)


Public Acceptance	Geological survey	Exploration (drilling of exploration wells, etc.)	Construction stage	Operation of power generation facilities
			RIA	
Subsidy	Subsidy	Investment	Loan guarantee	Feed-in tariff
[Targets] Cost of projects to get public acceptance.	[Targets] Cost of test drilling, etc. including geological surveys.	[Targets] Cost of drilling exploration wells to check whether a sufficient volume of steam can be stably	[Targets] Cost of drilling wells necessary for power generation and construction of power	Electric utilities purchase electricity generated from renewable sources including geothermal
Budget: \2.8 billion Subsidy ratio: 100%	Budget: \7.5 billion Subsidy ratio: 50% to 100%	extracted from heat sources. Budget : \6 billion Investment ratio: ~50%	generation facilities Budget: \2 billion Loan guarantee ratio: ~80%	at the procurement price and for the procurement period.

10

 \rightarrow 37 projects are subsidized.

Subsidy for Geological survey Budget(FY2013): \7.5 billion, Subsidy ratio: 50~100% 5. Amemasu-Dake Area 4. Toyoha Area (Akaigawa Village, Hokkaido) (Sapporo City, Hokkaido) O Operator 3. Kamikawa Area Not Local Company 6. Toyako-Onsen Area (Kamikawa Town, Hokkaido) (Toyako Town, Hokkaido) 2. Ashoro Town Area Local company (Ashoro Town, Hokkaido) 7. Iwakisan-Dake area O thick-bordered box (Hirosaki City, Aomori) \rightarrow New projects started in



4. Governmental support (FY 2013 budget)

OResearch and Development

Budget(FY2013): \0.95 billion, Subsidy ratio: 50~100%

Techniques for searching for fractures
Reservoir management technologies
Environment-friendly and high performance power generating systems

OShortening lead time

Budget(FY2014, now requesting): \3.37 billion, Subsidy ratio: 50% -streamlining the procedure of environmental impact assessments (EIA) (usually procedures take three to four years hence, reduce the period by half)

 \rightarrow Development of measures for environmental research of EIA in advance

4. Governmental support Feed-in Tariff Scheme started on July 1st, 2012

Act on Purchase of Renewable Energy Sourced Electricity by Electric Utilities (Feed-in Tariff Scheme for Renewable Energy)

- This Act obliges electric utilities to purchase electricity generated from renewable energy sources (Solar PV, wind power, hydraulic power, <u>geothermal</u> and biomass) at the procurement price and for the procurement period.
- \blacktriangleright Approved at the 177th session of the Diet 2011 and started on July 1st, 2012.

En	Energy source		Solar PV		Wind power Geothermal pow		Geothermal power		Small- and	medium-scale power	hydraulic
]	Procure catego		10 kW or more	Less than 10 kW (purchase of excess electricity)	20 kW or more	Less than 20 kW	15,000 kW or more	Less than 15,000 kW	1,000 kW or more but less than 30,000 kW	200 kW or more but less than 1,000 kW	Less than 200 kW
c	Instal	llation cost	280,000 yen/kW	427,000 yen/kW	300,000 yen/kW	1,250,000 yen/kW	790,000 yen/kW	1,230,000 yen/kW	850,000 yen/kW	800,000 yen/kW	1,000,000 yen/kW
Cost	mai	rating and intenance (per year)	9,000 yen/kW	4,300 yen/kW	6,000 yen/kW	-	33,000 yen/kW	48,000 yen/kW	9,500 yen/kW	69,000 yen/kW	75,000 yen/kW
	Pre-tax	IRR	6%	3.2%(*1)	8%	1.8%	13%	(*2)	7%	7%	
Procurement	per kWh E	Tax nclusive	<u>37.80</u> yen	<u>38</u> yen ^(*1)	<u>23.10</u> yen	<u>57.75</u> yen	<u>27.30</u> yen	<u>42.00</u> yen	<u>25.20</u> yen	<u>30.45</u> yen	<u>35.70</u> yen
Proc	price	Tax exclusive	36 yen	38 yen	22 yen	55 yen	26 yen	40 yen	24 yen	29 yen	34 yen
]	Procure perio		20 years	10 years	20 years	20 years	15 years	15 years		20 years	

For your reference

Regulations on geothermal development

1. Natural Park Act

Geological surveys and drillings for geothermal energy in national parks are restricted according to the protection zones.

2. Hot Spring Act

Drilling in pursuit of hot springs (hot water, mineral water, steam and other gas from underground) requires a permission of the prefectural governor.

3. Forest Law

Cutting down protected forests for constructing a base for drilling or a power generation plant requires delisting from protected status. Delisting requires a proven necessity for the public interest.

<u>4. Act on Special Measures concerning Reform of National Forest Business Management</u>
 Constructing a base for drilling or a power generation plant in a national forest requires loaning.
 A national forest can be used for public use or within 5ha in area, otherwise it cannot be used.

5. The Environmental Impact Assessment Law

Constructing a power generation plant with output of 10,000kW or over requires EIA. When constructing a power generation plant with an output of 7,500kW-10,000kW, the necessity of EIA is judged by project.

6. Electric Utilities Industry Law

Power facilities requires placing chief engineers in charge of supervision of safety matters of construction work, maintenance and operation of the power facilities.

Active participation in overseas projects

Turbine and generator share of the world

Toshiba(Japan)

Mitsubishi Heavy

Industries(Japan)

(source)Bloomberg

27%

23%

Others

Ormat

10%

Fuji Electric

21%

(Japan)

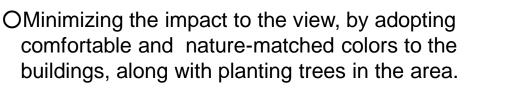
Ansaldo 10% 9%

OJapan is the largest supplier of geothermal equipment

Toshiba Corporation, Mitsubishi Heavy Industries .,Ltd. and Fuji Electric Co.,Ltd. have supplied 70% of geothermal turbines and generators worldwide.

ORecent move toward plant construction and operation

Adding to turbines supply, Japan participates in the projects from the very initial stage.

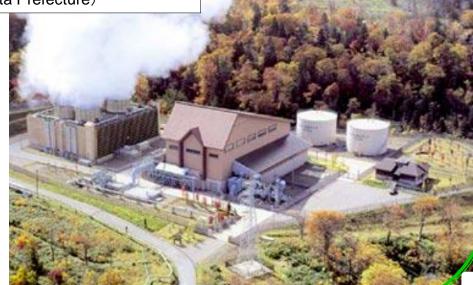

Area	Country	Japanese company	Schedule(planned) Operation starts	
Imperial Valley, California	USA	Fuji Electric Co.,Ltd.	in 2015	IPP / 49MW
Sarulla, Sumatra	Indonesia	Kyushu Electric Power Co. ,Inc., Itochu Corporation	in 2013	IPP / 330MW
Rantau Dedap, Sumatra	Indonesia	Marubeni Corporation	in 2016	IPP / 220MW
Dethus Java	Indonesia	Marubeni Corporation, Toshiba Corporation	in 2014	EPC / 55MW
Pathua, Java		JFE Engineering Corporation	III 2014	Construction of steam supply facilities / 55MW
Muara Laboh, Sumatra	Indonesia	Sumitomo Corporation	in 2016	IPP / 220MW
Rajavasa, Sumatra	Indonesia	Sumitomo Corporation	in 2016	IPP / 220MW
Таиро	New Zealand	Sumitomo Corporation, Fuji Electric Co., Ltd.	in 2010	EPC / 140MW

Environmentally considered geothermal development(1)

Consideration for the view

Examples of buildings

Uenotai Geothermal Plant (Akita Prefecture)



Kakkonda Geothermal Plant (Iwate Prefecture)

Sumikawa Geothermal Plant (Akita Prefecture)

Environmentally considered geothermal development(2)

Examples of buildings

Height of road

Consideration

for the view

OUenotai Geothermal Plant

Adjusting pipes to the height of the road, not to ruin the scene.

OHacchobaru Geothermal Plant (Oita Prefecture)

- (a) Constructing silencers in a position lower than a base, not to ruin the scene.
- (b) Adjusting pipes along the valley, hiding them with trees around.

6

Environmentally considered geothermal development(3)

Consideration for the view

Minimizing the height of buildings

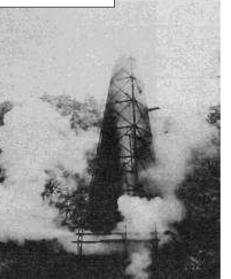
- O6 Geothermal plants were established before 1980 in Matsukawa, Kakkonda, Onikohbe, Ohdake, Hacchobaru and Ohnuma. These plants excluding Ohnuma installed turbines with downward exhausts.
- OLater, turbines with upward exhausts were installed to make the overall height of the buildings lower.
- ORecently, axial-flow turbine technology is being developed.

Type of turbine exhaust	Downward	Upward	Axial-flow	
Height of turbine	High	Low	Low	
Height of building (comparison in floor space index)	High (100%)	Low (50%)	Low (35%)	
An example of plants	Hacchobaru	Ohgiri	not yet	

Comparison of height by turbine types

downward upward axial-flow axial-flow downward upward タービン 復水器 E 復水器 復水器

source: Fuji Eectric co., Ltd.


17

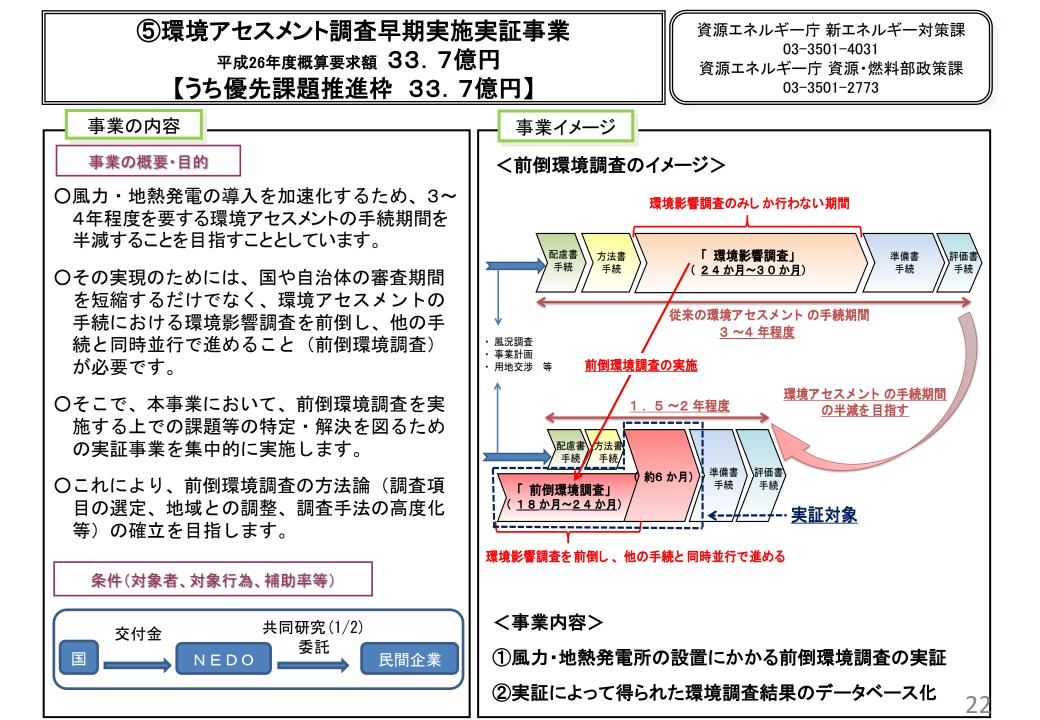
Environmentally considered geothermal development(4)

Technology development

Development in steam emission tests

Past

Picture: from materials of "Committee of Technology Developments considering the Environment" by Mr. Nakata of Geothermal Energy Research & Development Co. Ltd.


Afforesting after cutting down the affected trees (Ohnuma plant) picture : from The Nature Conservation Society of Japan

OSteam with hot water caused noise, hot water scattering or icing damage etc.

Now

ONowadays, dried steam comes out through separator, reducing noise, hot water scattering or icing damage.

Thank you for your attention!

Hidenori YONEKURA

International Affairs Office Energy Conservation and Renewable Energy Dept Agency for Natural Resources and Energy Ministry of Economy, Trade and Industry(METI) of Japan

Email: yonekura-hidenori@meti.go.jp