Case Study: Tauhara New Zealand

The Geothermal Institute University of Auckland

Bridget Lynne

Santiago de Chile, 26-29 May 2014

GEOTHERMAL

Tauhara Subsidence Case Study

Bridget Y. Lynne Mick Pender Trystan Glynn-Morris

Analytical techniques traditionally used for rock analysis

XRD – identifies mineralogy

Petrography

Primary vs secondary minerals

Alteration mineralogy

Fluid/rock interaction

XRF/microprobe - composition

All techniques contribute to our understanding of subsurface processes

TALK AIMS:

 To show how the addition of SEM enhances our understanding of subsurface processes and fluid-rock interactions

3. Combine SEM with compressibility testing

Case Study known subsidence bowls Tauhara Geothermal Field

Taupo

Prior to consent for further geothermal development

Cause of known subsidence bowls must be understood Extensive drilling program

Drilling Aims

Determine subsurface processes responsible for subsidence Identify weak horizons and possible future subsidence sites

Establish physical characteristics of subsurface rocks

Continuous core drilling program

Multiple testing approach undertaken

Physical Characteristics

- XRD
- Clay analysis
- Petrography
- Porosity
- Scanning Electron
 Microscopy (SEM)

Geotechnical Tests

- Pocket penetrometer tests
- Shear Vane tests
- Stiffness tests
- Atterberg Limit tests
- Compressibility tests to evaluate rock strength

For each slide ...

Drill hole with stratigraphic column

- I = inside subsidence bowl
- M = margin
- O = outside

Compressibility Value (CV) High CV = strong rock (1700 MPa) Low CV = weak rock (30 MPa)

> 2D vs 3D imaging Petrography vs SEM

59m CV = 36 MPa (very weak) Kaolinite pH ~3 T <120 °C Acidic conditions

W

804m

THM 16 59 m Kaolinite platelets 36 MPa

Petrographic image

Crystals

Clay matrix

> Hydrothermal Eruption Breccia 98m CV = 65 MPa

W

804m

Petrographic image

98m CV = 65 MPa

804m

Environmental change pH decrease

Clay 1 = illite pH 5-6 T~ 220°C

clay 1

98m CV = 65 MPa THM 16 (I)

Clay 2 = kaolinite pH = 3-4 T <120°C

clay 2

Fractured crystals Etched edges

THM12 (M) 381 m 25m CV = 522 MPa **Chlorite/illite** 0 160m U 268m Μ 360m 381m Mag Pressure

142119

10.0 kV 4.0 LFD 6000x 10.9 mm 0.60 Torr 45.07 µm

Crystals – etched edges in a clay groundmass (illite)

411m CV = 1730 MPa Illite/feldspar

411m CV = 1730 MPa Illite/feldspar

-10.0µm-135507

 HV
 Spot
 Det
 Mag
 WD
 Pressure

 10.0 kV
 4.0
 LFD
 8000x
 9.4 mm
 0.80
 Torr

THM 13 411 m CV = 1730 MPa

THM 13 411 m CV = 1730 MPa

Crystal structural integrity contributes to rock strength

263 m **CV = 84 MPa** THM 12 280 m **CV = 522 MPa** THM 12 411 m **CV = 1730 MPa** THM 13

Compare SEM to Petrographic Microscopy

Summary

SEM = greater detail than petrographic imaging

SEM = detailed information on fluid-rock interactions

subsurface processes + environments

Summary

Compressibility testing Combination of SEM roek strength

+ compressibility testing

Useful method in establishing: (1) rock strength (2) subsurface processes responsible for altering the rock which affects its strength

Subsidence (SEM + Constrained Modulus Values)

Subsidence studies can be applied to

pre-exploitation phases

producing fields

Environmental Impact Studies

Evaluate potential risk of subsidence following fluid extraction

Identification of preexploitation rock characteristics e.g. natural vs induced subsidence Identify lithologies susceptible to subsidence in existing fields

Useful study to identify subsurface processes showing why some lithologic units subside and others do not

Acknowledgements

Contact Energy Catherine Hobbis FEI

