Introduction to geothermal environmental considerations

The Geothermal Institute University of Auckland

Bridget Lynne

Santiago de Chile, 26-29 May 2014

Introduction to Geothermal Environmental Considerations

Anna ST

Bridget Y. Lynne

- Harrison and a second

Talk Outline

Physical impacts Chemical impacts Social impacts

Part B Optimising National Geothermal Use... How to classify, regulate and monitor

All aspects of environmental development must be given careful consideration

Physical impacts

Alkali chloride fluids are targeted for geothermal power

Withdrawal of fluid reduces subsurface pressure

Less pressure – numerous physical effects

Changes in surface activity

due to changes in subsurface pressure

Physical impacts

Thermally stressed grass = warm ground

Appearance of new thermal features

Not always where we want them

Dissolution or collapse craters (no volcanism)

Waiotapu

Ascending gases dissolve rock causing collapse

-thermally stressed vegetation -kaolinite clay

Rainbow Mountain, Waiotapu

Te Kopia landslide

ALTERATION via ACIDIC STEAM CONDENSATE

Acidic steam condensate overprinting

pH 3-4 Temp < 120 °C

Physical impacts

Changes in pressure can result in ... Hydrothermal eruptions

Physical impacts

Hydrothermal eruptions can occur anywhere

Hydrothermal Eruptions occur

- Without warning
- No magma involved
- Sudden change in subsurface pressure
- Flashing to steam and steam provides uplift of rocks for eruption
- Can be catastrophic

Ngatamariki 2005

Rotokawa:

Extent of deposits from hydrothermal eruption 6060 years ago 1-3 April, 1917 Hydrothermal eruption at Frying Pan Flat Waimangu

THE WAIMANGU ERUPTION APRIL 1 1917 R. G. Marsh, Photo,

Post-hydrothermal eruption-tourist house 1917

~1925: aerial view looking NE

Lake Rotomahana

Frying Pan Flat Lake

Extent of 1917 breccia

1917 hydrothermal eruption crater as it looks today

Small but dangerous hydrothermal eruptions behind residential property, Kuirau Park

Hydrothermal eruption breccia deposit

Physical impacts

Changes in pressure can result in ...

Subsidence

SUBSIDENCE

CAUSES

- 1. Acidic steam condensate –corrosive, weakens ground
- 2. Extraction of fluids reduces pore pressure = compaction

Even minor subsidence is a problem Kawerau pulp and paper mill has zero tolerance for ground subsidence

Subsidence of a netball court, Rotorua

Chemical Impacts

Chemical impacts

Geothermal sources of mercury Not common

Hazard: Inorganic mercury accumulates in river sediments, soil etc

Food chainEcological systems

Reported that:

Iron spades held in fumes become covered in metallic mercury after a few minutes exposure.

Lead and zinc house gutterings become coated with metallic mercury on cool nights

Whakatane Graben

Offshore hot springs

Globules of liquid mercury in discharging hot springs on the sea floor in the Whakatane Graben, NZ

Mercury droplets on cinnibar-rich (red) amorphous silica (Hg/silica hot spring rock)

Mercury-rich hot spring rock from Steamboat Springs, USA

Geochemist will determine water composition to identify any problematic chemistry

Arsenic and antimony sulphur compounds precipitating around edge of pool

Champagne Pool, Waiotapu, NZ

Geochemistry can determine if any nasty chemical constituents are going to be a problem for the development of the power plant

Chemical impacts

Disposal of drilling mud Pipe scale Other drilling products

Social Impacts of development

Loss of tourist features

Social impacts

Many features have cultural significance

Noise pollution

ap of surface activity

which features change

Ongoing monitori

Enables early detec

Next talk.... Optimising National Geothermal Use... How to classify, regulate and monitor