Overview Geothermal Regulation and Licensing

The Geothermal Institute University of Auckland

Bart van Campen

Santiago de Chile, 26-29 May 2014

Outline

- 1. Introduction
- 2. Ownerships, property rights, access
- 3. Electricity markets
- 4. Environmental licensing

Tomorrow:

- 1. Community/indigenous participation
- 2. Investment and risk support policies

1. Introduction

- Wide subject area, introduce 'why', 'basics'
 & 'examples'
- More in background reader/discussion document
- 4 cases: NZ, Philippines, Chile, Kenya
- 6 dimensions
- Questions and discussions welcome

1. Why important?

- Geothermal development complex, expensive and risky
- Geothermal has aspects of other resource sectors (petroleum&mining), but also of (regulated) electricity sector/markets
- Geothermal is environmentally 'relatively benign' and many impacts already happen naturally, but need to be managed
- Geothermal projects often in remote, pristine regions (or highly populated)
- (Personal) dissatisfaction with existing publications generally not covering whole range and balance in geothermal regulation & policy

1. Some countries as examples

• Countries with similarities (public-private Whate Wh

	History & background		
New Zealand	Since 1950s; 900 MWe installed; original state intiated development, now private developers; 3-5 GWe potential		
Chile	Recent exploration wave, 2-4 projects 'approved'; none installed yet; complete private development; 3-16 GWe potential		
Philippin es	Since 1970s; 1900 MWe installed; previous state development; newly development under privatized framework (2008-); 3-4GWe potential		

Kenya

Since 1970s; 500 MWe installed; mainly state&donor initiated development; recent drive for private development, but still major state involvement; 5-16 GWe+ potential

2. Resource ownership, property rights and access

2. Main resource/property themes

- Resource ownership & property rights
- Access policy (single vs multiple)
- Sustainability, renewability & (controlled) depletion
- Monitoring and reporting
- Royalties & taxes

2. Legal ownership & access

- Most countries geothermal is public/national/regional resource (USA notable exception: land-owner; NZ mixed but effectively regional)
- Generally provides the basis for monitoring & control
- Resource/use access often defined in regulations similar to Oil/Gas:
 - Licences for exploration & production for defined periods
 - Exclusivity of resource use during period (or rules for multiple access)
 - Definitions of royalties/taxes/costs (or virtually `0')
 - Conditions (renewable/sustainability or in environmental legislation)
 - Conditions for rendering licences (and data or not)
- Often a balance between attracting investors and 'keeping national control', 'keeping speculators out', etc

2. Resource ownership (ctd)

- In some countries provisions for indigenous people/regions to co-decide and/or get share of royalties (e.g. Philippines)
- NZ organized quite differently, but with similar effects

2. Physical access

- Even if resource ownership and access public
- Physical access often private: negotiate with landowners
 - For access to resource
 - For infrastructure (transmission, roads, etc)
- Jurisdictions differ in ability of (central) authority to 'force access' in the 'public interest'
- Resources sometimes in National/Conservation
 Parks/Reserves => other legislation & authorities
 involved => complex

2. ctd

- Sustainability & renewability are differently defined, via different legislation (NZ geothermal 'renewable' by law, but not exactly defined. In effect policy to categorize all systems in 'protected' vs 'development-with-controlled-depletion')
- Monitoring and reporting generally less well defined than in oil/gas (see tomorrow Resource Assessment)
- Most jurisdictions '0' or very little royalties for use of 'public' resource (Philippines 1.5% of net; NZ: 0)
- Generally normal company taxes (but incentives for renewables in many countries)

2. Country examples

	Ownership & access		
New Zealand	No ownership', but Regional Authorities 'managers' of resource' via RMA-consents to use resource under sustainability conditions (30-35 years); access through private (indigenous) land-owners. No royalties.		
Chile	State resource ownership; exploration and exploitation licensing rounds & contracts under Ministerio de Energia (perpetual licenses). Much private & indigenous land (state can force access).		
Philip- pines	State resource ownership, but need for regional/ indigenous approval. New Renewable Energy Act (2008) defines exploration & geothermal service (=exploitation) contracts (25 yrs +15) under Department of Energy. Contracts also specify royalties.		
Kenya	State resource, orginally state development; now also licences to private companies, but still public company dominance. Much land is state-owned.		

3. Electricity market & policies

3. Electricity price defines geothermal project feasibility

- Access to electricity market (incl linking resource to transmission grid)
- Open access or state or oligopoly company dominated
- Main electricity market price and length of contract
- Alternative/competing supply (hydro, fossils, etc)
- Electricity market/renewable support policies
- Indigenous resource policies

For comparison Chile-NZ-Philippines-Kenya looked at

- Geothermal resource & costs
- Demand scenarios
- Alternatives & prices
- Support policies

3. Country examples

	Electricity Market & RE-policies
New Zealand	Open competetion between private & (part) state-owned generation companies. Very limited support from NZ Emissions Trading Scheme. Geothermal competitive 'on its own'
Chile	Open competition between privately owned generators. High power prices on imported fossil fuels & support from NCRE-policies, but geothermal higher cost in Andes & 'marginally competitive'
Philip- pines	Newly privatized electricity market. High power prices on imported fossil fuels. Various types of RE-support for geothermal (in RE-Act-2008). Same Act defines feed-in-tariffs. Seems competitive: new geothermal plants in pipeline.
Kenya	Privatizing generation market, but with high state involvement and single buyer. Feed-in- tariffs for geothermal and other RE. Question how competitive geothermal is.

4. Environmental licensing

4. Main environmental effects

Environmental impacts from geothermal lower (esp fossil fuels), still possible impacts:

- Habitat disturbance (animals, plants, wetlands)
- Noise and visual impacts (facilities, steam plumes)
- Cultural/historical resources impacts and impact on existing surface features
- Air emissions (construction equipment emissions, fugitive dust, hydrogen sulphide, carbon dioxide)
- Water use, hazardous materials & waste, wastewater discharges, and groundwater disturbance
- Land use impact (e.g. subsidence) and compatibility (e.g. recreation, farming)

4. Environmental Institutions

- Often many laws and institutions involved (resource, conservation, forestry, air & water authorities,
- Many countries attempt coordination via 1 authority/IEA (NZ, Chile)
- BUT in Philippines EDC has indicated it has to comply with 22 environmental and 17 forestry/watershed laws for its geothermal operations and for legal cover applied for 1,464 permits in 2011 (EDC, 2012)

4. Country examples

	Regulation of environmental impacts		
New Zealand	Resource Management Act (1990) authorizes regional authorities through resource consents, incl effects on land use, water and air, indigenous biodiversity, etc. 1-stopwindow. Regions guided by National Policy Statements		
Chile	Environmental Assessment Agency responisible to coordinate impact assessment & approval of each project. Since 2012 separate SMA for monitoring (&fining) there-after. 1-stop-window. Generally provincial level.		
Philip- pines	Department of Environment & Natural Resources coordinates but environmental laws spread over many agencies and Presidential Decrees		
Kenya	NEMA coordinates application of many national and international environmental laws. Limited experience with geothermal. Used to get expertise from KenGen.		

5. Community/indigenous participation

Community/indigenous participation

- Impact geothermal projects generally lower, but ...
- In many countries geothermal resources are in remote regions with indigenous populations
- Many have a special cultural or spiritual connection with the geothermal (and other natural) resources
- Projects can have negative and positive impacts
- Community/indigenous participation sometimes arranged in EIA-process, or separate Indigenous Laws (Chile, Philippines) or International Laws/Guidelines (ILO, WB)
- Examples esp of geothermal projects in Philippines and NZ
 Research works wonders

New Zealand

- Indigenous Maori had special connection with Geothermal, water 'kaitiakitanga' (guardianship)
- Since Treaty of Waitangi not 'Crown Resources' (like petroleum & minerals)
- Resource Management Act (RMA-1991) puts responsibility for sustainable management with regional councils
- RMA recognizes these Maori values and special relationship
- Many geothermal resources in CNI are on land owned by Maori groups

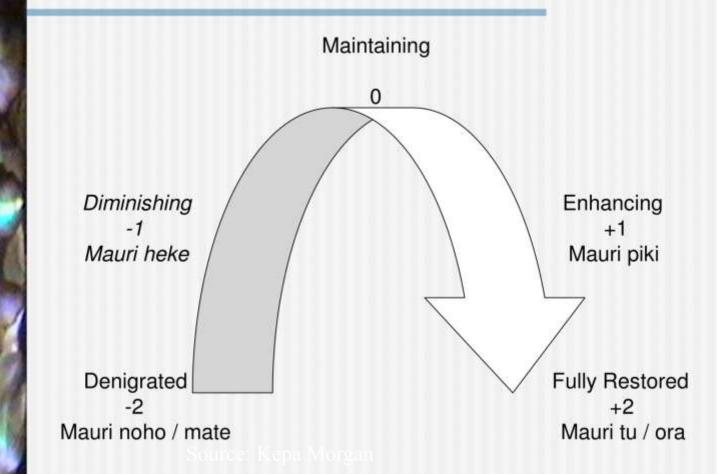
Waikato Region

(70% of NZ high temperature geothermal resources)

Waikato Regional Council geothermal policy (Brockelsby, 2013):

- Consultation with Maori required when developing policy
- Iwi (Maori) Management Plans must be taken account of when making policy
- The RMA-requirement to "recognise and provide for" Maori values, e.g. reflected by identification and protection of culturally significant geothermal surface features
- Permit processes enable Maori input with rights to make submissions and appeal decisions as 'affected parties'
- A Maori representative on the Peer Review Panel that regularly reviews impacts and conditions under an 'adaptive management' approach

Example Community Based Ranking on Long-term Intergenerational <u>Mauri</u> (health) of the Land and <u>Tangata</u>


Whenua (indigenous people)

		v	Group 1	Group 1	Group 2	Group 2
		Indicator	2010	2040	2010	2040
		Surface Features	0	+1	+1	+2
E	nvironmental	Waste Water	0	0	0	0
		Subsidence	-1	0	-1	0
		Cost/Benefit	+1	+2	+1	+2
	Economic	Cash Flow	+1	+2	+1	+2
		Employment	+1	+1	+1	+1
		Ancestral Connection	+1	+1	+1	+1
	Cultural	Kaitiakitanga	+1	+1	+1	+1
		Returning Home	+1	+1	+1	+1
		Sustainability	+1	+1	+1	+1
	Social	Community Resilience	+1	+2	+1	+2
<i>)</i>)		Aesthetic Environment	-1	-1	-1	-1
		Results:	+0.5	+0.91	+0.58	+1

The Mauri (universal health) assessment scale

Sustainability Assessment in Absolute Terms

Specific references

- Hikuroa, D.C.H., Morgan, T.K.K.B., Henare, M., Gravley, D.M. 2010. Integrating indigenous values into geothermal development. Geothermal Resources Council Transactions, v. 34, 51-54.
- Hikuroa, D. C., Morgan, T. K. K. B., Durie, M., Henare, M., & Robust, T. T. (2011). Integration of Indigenous Knowledge and Science. *International Journal of Science in Society*, 2 (2), 105-114. URL: http://hdl.handle.net/2292/18215
- Hikuroa, D. C. H., Slade, A. T., & Gravley, D. M. (2011). Implementing Māori indigenous knowledge (mātauranga) in a scientific paradigm: Restoring the mauri to Te Kete Poutama. MAI Review, 2011 (3), URL: http://hdl.handle.net/2292/18216
- Hikuroa, D. C., Morgan, T. K. K. B., Henare, M., & Gravley, D. M. (2010). Integrating Indigenous Values in Geothermal Development. In J. S. Te Rito, S. M. Healy (Eds.) Proceedings of the 4th International Traditional Knowledge Conference, 2010, 149-152. Auckland, New Zealand: Nga Pae o te Maramatanga.
- Hikuroa, D. C., Morgan, T. K. K. B., Gravley, D. M., & Henare, M. (21/11/2010). A Kaitiaki approach to Resource Development. Paper presented at GeoNZ2010, University of Auckland, New Zealand. 21 November 24 November 2010. GeoNZ 2010 Abstract Volume. (pp. 1).

5. Country examples

	Community/indigenous participation
New Zealand	High involvement of indigenous (Maori) people due to RMA-requirements, historic-cultural ties and land-ownership & co-investment
Chile	Several local and international indigenous laws. No geothermal projects yet, but 'talking to communities'. Much environmental and indigenous protest against energy projects of late, hence great sensitivity.
Philip- pines	Many geothermal fields in remote, indigenous regions. Much experience with developing geothermal projects in participation with indigenous communities. Geothermal royalties are shared with regions & indigenous groups
Kenya	Kenya abides by many national & international indigenous treaties. KenGen involved in many community projects with indigenous population of Olkaria (Masai)

6. Investment and risk support policies

6. Investment/risk support policies

- Historically much state-involvement in most geothermal development (also NZ, Philippines, Kenya
- Presently: more private sector with 'enabling' government/donor policies
- Balance between supporting 'deserving', renewable, baseload, indigenous energy resource and environment/government investment, etc
- Many options, choices depend on national preferences and historic developments

Overview of countries studied

- Kenya: heavy support through its government-owned Geothermal Development Company (GDC) doing much of the steam field exploration and resource proving, as well as feed-in-tariffs and the multilateral Geothermal Risk Mitigation Facility);
- Philippines: medium support through feed-in-tariffs, reduced taxes
 & royalties and government-led pre-exploration programmes
- Chile: limited support through NCRE and capacity building
- New Zealand: very limited support with its Emissions Trading Scheme and NPS on Renewable Generation and consenting support

- Capital (subsidy, grants, fiscal incentives)
- Risk capital / joint investment / soft loans
- Drilling insurance (Iceland, Germany)
- Support for geothermal/renewable electricity (subsidy, Feed-in-Tariff, RPS/NCRE obligations, carbon markets)
- Support for (or state-initiated) geophysical exploration studies
- Pooling of expertise and (drilling) equipment
- (softer): capacity building, geothermal outreach and promotion

1. Geothermal Project Phases Activities, Investment & Risk

	Cumulative time	24 months		60 months	50 yrs+
	Expl	oration	Production Drilling	& construction	Operation
	Pre-feasibility	Slim-hole drilling	Feasibility studies	Construction	Plant operation & maintenance
Main Activities	Geophysics & geochemistry		Consents & production drilling		Field Management: Make-up well drilling, reinjection
Investment amount	100,000's	millions	10 millions	100 millions	Cash Flow after ca. 5 yrs, for 50 yrs+
Risk/Capital raising	Risk/venture or	government funds	Transit/mixed	Bankable	Utility, sellable
	Surveys&data	Risk Mitigation Fund	IRISK MITIGATION FUNG	Private sector financing	Joint Geothermal Operator training
Institutional support options	Expert advise pool	Expert advise pool	Stable regulatory system	Donor/Intern. Financial Insititution Support?	Expert Reviews & Reservoir Modelling of Geothermal System
	Training	Training	Business model development		Productive/tourism uses of 'waste heat'
	Equipment pool	Equipment pool	Community/indige-nous engagement		

6. Country examples

	Geothermal investment & risk policies
New Zealand	Previously heavy state involvement in exploration, resource de-risking and project development. Now all private, but most large geothermal fields have geophysics, well and other data available (brownfield)
Chile	In principle complete private development, but slow. State considering/investigating support in transmission and drilling risk. Government already investing significantly in research, education & capacity building
Philip- pines	Previously mainly state and donor development, recently completely privatized. Government support includes exploration studies, tax holidays, reduced import tariffs, etc
Kenya	Mainly state and donor development, despite privitization. Special state-owned exploration company (GDC). Also international donor funds started (KfW-GRMF) to support private sector exploration and drilling

