

Geothermal Reservoir Modelling: Uses and Limitations

Te Whare Wänanga o Tämaki Makaurau

John O'Sullivan, Engineering Science University of Auckland, New Zealand

GEOTHERM

Outline

- Introduction to modelling
- Geothermal modelling process
- Modelling uses
- Limitations

Introduction to modelling

Why make models?

- To help understand the what is happening or has happened
- Sometimes we can't measure what happened:
 - Things are too small or happen to fast
 - You can't reach what you want to measure eg deep underground
 - Measuring data can affect the results eg pressure sensors on planes
 - You can't always put things inside people!

Why make models?

- To make predictions about what will happen in the future
 - Important for planning eg budgets
 - Can save a lot of money eg design costs
 - Can save a lot of time
 - Build confidence in decisions not just from model results but also modelling process

GEOTHERM

A simple example

World population growth

- Follows an exponential law
- Different rates for different periods

A simple example

For our model we'll use an Exponential Law

$$P = e^{Rt}$$

- We'll use four different rates for four different periods:
 - 1. Pre-Agriculture
 - 2. Pre-Industrial
 - 3. Post-Industrial
 - 4. Modern

A simple example

1st attempt:

Period	R value
Pre-Agriculture	0.0003
Pre-Industrial	0.0003
Post- Industrial	0.0003
Modern	0.0003

A simple example

2nd attempt:

Period	R value
Pre-Agriculture	0.0003
Pre-Industrial	0.0005
Post- Industrial	0.0005
Modern	0.0005

A simple example

■ 3rd attempt:

Period	R value
Pre-Agriculture	0.0003
Pre-Industrial	0.0007
Post- Industrial	0.0007
Modern	0.0007

A simple example

4th attempt:

Period	R value
Pre-Agriculture	0.0003
Pre-Industrial	0.0007
Post- Industrial	0.005
Modern	0.005

A simple example

■ 5th attempt:

Period	R value
Pre-Agriculture	0.0003
Pre-Industrial	0.0007
Post- Industrial	0.005
Modern	0.0175

This process is called model calibration

A simple example

- Our calibrated model matches historic data
- Now we can use it predict the future

Geothermal models

- Geothermal models are like our example
- They are based on laws and calibrated using real data
- There a many different types of geothermal models ranging in complexity
- Stored heat calculations are very simple "models" that follow the Conservation of Heat Law:

Useable Heat = Total Heat – Unusable Heat

(energy you take out)

(energy in the ground)

(energy that stays in the ground)

Geothermal models

Geothermal reservoir models are much more complicated and follow several laws:

Conservation of Mass

• "What goes in must come out"

Conservation of Heat

• "Energy cannot be created or destroyed"

Darcy's Law

• Define how hot water and steam move underground

Geothermal models

Before talking about model uses and limitations it is helpful to understand how geothermal models are made

Geothermal modelling process

- 1. Gather and analyse data
- 2. Create a "conceptual model" of the geothermal system
- 3. Build an calibrate "natural state" model
- Use the natural state model to make a production model and calibrate with production history data
- 5. Run future scenarios using the production model
- Steps 3 to 5 are iterative

Gather and analyse data

- Gather as much data as possible
- From a wide variety of sources:
 - Geosciences
 - Environmental sciences
 - Engineering
 - Hydrological
- Data collected before production occurs is very important!
- Some things are impossible to predict before wells are drilled

GEOTHERN

Conceptual model

- Combines and distils all the available data
- Provides a "conceptual" idea about how the geothermal system behaves

Natural state model

- A reservoir model of the system before any production occurred
- Model calibrated using pre-production data:
 - Exploration well data
 - Surface features (geysers, hot pools, springs etc)
 - Completion test data from the first production wells

Production model

- Reservoir model follows the production history for the system
- Transient data are used to calibrate the model
 - Pressure decline
 - Enthalpy changes
 - etc

Future scenarios

- Once a model has been calibrated using production data it can be used to predict the future
- The more <u>good</u> data used for calibration the more accurate the predictions
- Scenarios are set up that define expected future production, well locations, reinjection strategies etc
- How scenarios are created depends on what the model is to be used for

- Geothermal reservoir models are mainly used to predict the following:
 - How long a system can be economically exploited
 - What schedule of new wells are required to maintain production
 - How a system will respond to different rates of production
 - How to best re-inject fluid into a system
 - How the natural geothermal features will react to the systems exploitations
 - What other environmental effects may occur

- Which of these are important to a developer?
 - How long a system can be economically exploited
 - What schedule of new wells are required to maintain production
 - How a system will respond to different rates of production
 - How to best re-inject fluid into a system
 - How the natural geothermal features will react to the systems exploitations
 - What other environmental effects may occur

- Which of these are important to a policy maker?
 - How long a system can be economically exploited
 - What schedule of new wells are required to maintain production
 - How a system will respond to different rates of production
 - How to best re-inject fluid into a system
 - How the natural geothermal features will react to the systems exploitations
 - What other environmental effects may occur

- Reservoir models are also used for research
 - How do geothermal systems form and why?
 - How do geothermal system interact?
 - What are the fundamental processes that occur in geothermal systems?
 - etc

How long a system can be economically exploited

In most cases the amount of energy taken out of a geothermal system by production is more than the natural recharge

How long a system can be economically exploited

- At some point it will become uneconomic to continue exploitation and the production will have to stop while the pressure recovers in the system
- This may be in 25 years, 35, 50 or even 100
- Stored heat calculations give simple estimates useful only as a first guess
- Reservoir models are much more accurate and take into account many other factors

How long a system can be economically exploited

Brief History of Wairakei:

- Started operation in late 1958
- Pressures dropped quite soon
- Pressure decline of 25bar by 1965
- Panic!
- Send for the modellers!

How long a system can be economically exploited

- In New Zealand regulators require reservoir models to be used as part of the permitting process
- In many other countries it may become a requirement for companies listed on the stock exchange

What schedule of new wells are required to maintain production

- As pressure declines locally, wells will produce less.
- Reservoir models are used to predict when new wells must be brought online to maintain power production

Figure 10. Schedule of the timing of the addition of make-up wells

What schedule of new wells are required to maintain production

Reservoir models can also be used to plan extra capacity needed for regular maintenance

- Different rates of production affect how quickly pressure in a system declines
- This also affects the schedule of new wells to be drilled
- Different pressure decline rates will affect the environment differently

Tauhara expansion (source: Contact)

How to best re-inject fluid into a system

- Re-injection is carried out for two main reasons:
- 1. To slow down that rate the pressure in the system declines (pressure support)
- 2. To safely dispose of extracted fluid

How to best re-inject fluid into a system

- For pressure support reservoir models are used for the following:
 - Indicate where best to re-inject
 - How much to re-inject
 - At what temperature
- The objective is to support production while avoiding thermal breakthrough

How to best re-inject fluid into a system

- For fluid disposal the objective is to determine where large quantities of fluid can be injected without affecting production or the environment
- Can simulate tracer tests for calibration

Tracer simulations (source: Bjarkason 2014)

How the natural geothermal features will react to the systems exploitation

- Depending on the connection between them, surface features can be affected by production
- In Rotorua in New Zealand a borehole closure programme was implemented in 1980 to protect important natural features

How the natural geothermal features will react to the systems exploitation

How the natural geothermal features will react to the systems exploitation

- There is renewed interest in more exploitation of the Rotorua system
- Our reservoir model will be used to assess the likely impact of any future increase on protected surface features

(source: Ratouis 2014)

How the natural geothermal features will react to the systems exploitation

- In some cases production creates new surface features!
- Models can help predict this

What other environmental effects may occur

Ohaaki

Marae

- Many environmental effects are controlled by the pressure and temperature in the geothermal system
- Reservoir models predict these and so can be used to predict environmental effects
- A common environmental effect is <u>subsidence</u>

GEOTHERM

What other environmental effects may occur

Subsidence of nearly 10m affecting cultural meeting house

1978

Today

GEOTHER

What other environmental effects may occur

Broadlands Road

Ohaaki reservoir model

Subsidence rate per year (source: Allis)

GEO

What other environmental effects may occur

Subsidence can also have an impact on the power plant

Estimate well properties

Limitations of Modelling

- Do you think our estimate of global population will be correct?
- No!
- "All models are wrong..."

- "... but good models are <u>useful</u>"
- Every model has assumptions that limit what it should be used for and what it can tell us.
- It is important to understand what reservoir models can <u>not</u> tell us

Drilling Success

Reservoir models can <u>not</u>:

- Predict probability of drilling success
- Tell you exactly where to drill a well
- Predict exactly where good permeability exist
- Predict problems with casing, cementing etc
- Predict well performance before drilling

Reservoir models calibrated with good data <u>can</u>:

- Tell you where hot, high enthalpy fluid is most likely to be
- Predict where good **<u>average</u>** permeability exist
- Predict future well performance following initial testing

Operations

Reservoir models can <u>not</u>:

- Predict operational problems
- Predict mechanical failures
- Predict human error
- Predict economic decisions

Reservoir models can help:

- Plan contingency in resource availability
- Predict the effects of unexpected, long-term changes in production

Chemistry

Standard reservoir models can **<u>not</u>**:

- Predict where scaling will occur and how quickly
- Predict which wells will be affected by high NCG content

If you want predictions like these you must:

- Gather accurate data about chemistry in the system
- Include chemistry in the reservoir model this can make models much more complicated
- Calibrate the model using the chemistry data
- For scaling the results from the reservoir model must often be used in another smaller model of the components in question

Chemistry

.000244 .001381 .000812 .000162 .001300 .000731 **TTAK** 000081 .001219 000650 ATTANA 67796-00 .000000 .001137 .000569 STF3662 .001056 .000487 11720 .000975 .000406 .000894 .000325

Measured and modelled chloride concentrations (sources: Stewart, Setiadi)

Calibration Data

- It is very important for all aspects of a geothermal development that you gather good data regularly (or require good data to be gathered)
- Models without much data for calibration or poor quality data are of limited use
- Natural state data is important if you don't know where you started its hard to know where you will arrive!

Preliminary models

- Preliminary models can be made early in the process with a small amount of data
- They are more accurate than stored heat calculations but are still <u>only indicative</u>
- Can be used as a basis for more advanced models

Statistics

- Standard reservoir models are not statistical models
- They can be used as part of Monte Carlo simulations but this is computationally expensive
- Including uncertainty quantification in reservoir models is one of our important areas of current research

Thank you

Thank you to IRENA

Questions?