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Abstract

In order to come up with robust short- to medium term forecasts of
final energy demand, we test a whole space of econometric panel data
models using both in-sample and out-of-sample selection criteria in an
approach similar to those used by Auffhammer and Steinhauser (2012)
and Auffhammer and Carson (2008) and compare the results. We use
this approach to translate new scenarios for GDP per capita, popula-
tion and urbanisation development in the 21st century into appropriate
short- to medium-term energy demand scenarios, differentiated by eco-
nomic sector and final energy type.

Keywords: energy demand, econometrics, panel data, forecasting, de-
veloping countries

1 Introduction

The main cause for anthropogenic climate change is human energy use:
More than three quarters of man made Greenhouse Gases (GHGs) stem
from burning of fossil fuels (Edenhofer et al. 2014). Therefore, if we want
to make any statements about future means to mitigate climate change,
we need to think about future energy use. Energy use, in turn, is strongly
related to affluence levels, both in quantity and in composition.

In order to say anything about mitigation efforts that might stem from
a global or regional climate agreement, it is vital to know something about
future energy demand, because it will be this demand that will mainly cause
further GHG-emission if there are no changes in behaviour on the demand
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or energy supply side. Findings e.g. by Steckel et al. (2013) show that
especially in the early phases of economic development, the need for final
energy types that can only at high cost be substituted against other energy
types is comparatively higher than for countries at a later stage of economic
development: The buildup of infrastructure, which is a precondition for later
growth of other sectors, comes along with high demand for cement and steel,
both of which require solid fuels which can only at high cost be substituted
against other types of final energy. These necessities have yet to be included
into Integrated Assessment Models (IAM) of Climate Change like REMIND
(Luderer et al. 2013). One possible way for this inclusion is to calibrate
these models to fulfill exogenous final energy demand scenarios like the one
developed by this paper, leaving the fulfillment of the demand to the energy
supply system implemented in the IAM.

The release of GHGs is an external effect of energy demand. What
is demanded are not GHGs, but energy services like heat, cold, mechanical
power, light, information processing or entertainment. These energy services
are provided with the help of final energy and specific capital or (durable)
consumption goods. From an econometric point of view it is difficult to start
an analysis of energy service demand directly since there hardly is data on
energy service demand. Data availability is much better for final energy,
which is the reason the present study will use this data.

We have created a country panel dataset on historical GDP, sector
shares, population and urbanisation and energy demand for the five final
energy types solid fuels, liquid fuels, gases, heat and electricity by economic
sector from different sources. We use this dataset to estimate more than
hundred econometric models for each economic sector and select the best
according to several model selection criteria. The approach is similar to
the one used by Auffhammer and Steinhauser (2012) and Auffhammer and
Carson (2008), but focuses less on the size of the model space and rather
on creating a more detailed dataset. We took special care in making the
approach easily to reproduce and extend.

The results of the econometric analysis are used to translate projections
of GDP per capita and population development in the 21st century into
appropriate scenarios of final energy demand, separated by type of final
energy.

The principal question in this paper is not new: What is the relationship
between income per capita and energy demand? There is a vast amount of
literature concerning this question. Many of these papers, e.g. Stern and
Enflo (2013), Chontanawat, Hunt, and Pierse (2008), and Huang, Hwang,
and Yang (2008) try to solve the question whether income drives energy
demand or the other way round. This question is of lesser interest in our
context, especially since it seems like the direction of causality between
energy demand and income is not stable (Fouquet 2013; Fouquet 2010).
Liu (2004) estimates residential and industrial price and income elasticities
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of demand for different types of energy types for 23 developed countries.
He uses a dynamic panel data approach and a simple partial adjustment
model between unobservable desired demand and actual demand, which is
less flexible due to technological (capital stock) and psychological reasons.

The contribution of this paper is that it puts forward an approach to
translate exogenous pathways of GDP, economic structure, population and
urbansation into according final energy pathways. The method described
in this paper requires little assumptions – basically those that are hidden
in the exogenous pathways and the used econometric models. The latter
are clear. It is flexible with respect to changes in input of historical data
and future pathways of GDP, economic structure and other regressors. The
straightforward econometric methods can be substitued with more advanced
ones.

We proceed by giving an overview of the mechanisms of energy demand
(section (2)). Section (3) describes the data used and how it is aggregated
into regions. In section 4 we describe the space of econometric models used
(4.1) and the used measures to select a best one (4.2). Resulst are discussed
in section (??) on the global (5.1) and the regional level (5.2). Section (6)
concludes.

2 Overview

It is important to understand the relation between final energy and energy
services. Figure 1 depicts the way from primary energy carriers via final en-
ergy to energy services. Primary energy carriers are grouped via their state
of matter (solid, liquid, gas, electricity). The focus here is on the process
of energy service provision from different final energy types. It is clear that
the different final energy types show different flexibility in providing energy
services. 1

Different types of energy services can be provided using different types
of final energy, which again can be provided using different types of primary
energy.

1We leave out some conversions that are feasible, but not in use anymore or only in
niches, like using kindlings for lighting like it was done in the middle ages. We also do
not depict the level of secondary energy, which is, basically the output of primary energy
conversion before it is delivered to the final customer. To put it another way, final energy
is secondary energy net losses occuring in storage and transport.
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Figure 1: Schematic overview of the conversion from primary energy to
final energy to energy services. Blue lines between primary and final energy
indicate technologies mainly in use today. Dashed lines indicate technologies
that are possible, but hardly in use anymore.
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3 Data

3.1 Historical data

Final energy demand data

The main source for historical data on final energy consumption is the Global
Energy & CO2 data base from ENERDATA2. This database contains sector
specific final energy demand data for different economic sectors, covering up
to 181 countries and starting in 1970. The length of the time series for
specific countries varies and some show gaps of a few years. We have closed
these gaps using linear interpolation.
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Figure 2: Overview of historical and scenario data on the global scale for
GDP per capita, population and urbanisation. Sources: WDI, Penn World
Tables, SSP database, own calculations

Many other papers on energy-economic issues use the energy data pro-
vided by the International Energy Agency (IEA) (IEA 2014). However, this
data does deliver less detail: It only covers 126 distinct countries. Other
countries are aggregated regions like Other Africa. It remains unclear how
detailed the data underlying these aggregated regions are.

We aggregate different energy demand figures into five categories of final
energy demand: solid fuels, liquid fuels, gases, heat and electricity. Table (1)
gives an overview. This aggregation is motivated by different possibilities of

2http://www.enerdata.net/enerdatauk/knowledge/subscriptions/database/

energy-market-data-and-co2-emissions-data.php

5



substitution. Within each category, substitution between the different fuels
is possible without major difficulties.

Electricity is special in that it can be used for all economic tasks where
energy is required. However, supply and demand have in general to be
balanced carefully since storage is expensive. Usually electricity has the
highest price of all final energy types.

ENERDATA contains demand data separately for the five sectors resi-
dential, transport, agriculture, industries and services.

Macroeconomic data

We use historical GDP per capita and population data from the most up-
to-date version of the Penn World Tables (PWT) (Feenstra, Inklaar, and
Timmer 2013). This database covers 163 countries from 1950 onwards. Since
its geographical coverage is lowest of all datasets, its the limiting factor with
respect to the spatial coverage of the dataset.

Information regarding the economic structure is taken from the World
Developmetn Indicators. The database provides information on the shares
of value added by the three classical economic sectors agriculture, industry
and services on a country level from 1960 onwards for most countries.

WDI is also the source for historical data on urban population and coun-
try area.

3.2 Scenario data

The shared socioeconomic pathways

Scenarios on the future development of GDP per capita, population and ur-
banisation are taken from the Shared socioeconomic pathways (SSP) database
3. The SSPs were developed in a joint effort by several teams of the Inte-
grated Assessment Modelling Community and are described in O’Neill et
al. (2013), Chateau et al. (2014), Dellink (2014), KC and Lutz (2014), and
Leimbach et al. (2014). They provide data on GDP per capita, population
and urbanization up to the year 2100 on a country level4.

The assumptions underlying the different SSP scenarios are described in
detail in O’Neill et al. (2014) and the scenarios used here are described in
Chateau et al. (2014). SSP1 is a scenario that can best be described with the
keyword ”Sustainability”. GDP per capita rises quite fast on a global scale
and income equality between countries goes down. At the same time envi-
ronmental impact is comparably low because adverse socioeconomic effects

3https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=

welcome
4The SSP scenarios provide data up to 2100. However, this study does not intend to

provide energy demand forecasts for such a long time frame.
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of conventional growth are, at least partly, internalized. SSP2 is charac-
terized as a ”business as usual” scenario which basically extrapolates the
trends that showed up over the past decades and is generally described as
the most likely sceanrio without behavioural changes or policy intervention.
SSP3 is characterized by a low level of international cooperation, leading to
comparatively low income growth while population keeps on growing for the
whole scenario time-frame. In SSP4, growth is distributed very inequally
between countries (and in countries as well), leading to a situation which is
slightly better than SSP3, but still worse than all other scenarios. Finally,
SSP5 shows many of the characteristics of SSP1, but the focus is on conven-
tional development. This leads to GDP growth even higher but is assumed
to have much more adverse impacts on the environment.

Since SSP2 is the reference scenario, in the following, we usually present
the results for SSP2, if not otherwise mentioned.

Economic structure

The SSP database described in section 3.2 do not contain scenario data on
economic structure. To use, it seems evident that it is important to take the
structural composition of an economy into account when thinking about the
economy’s energy demand:

• Industrial production usually involves large amounts of energy for pro-
cessing raw materials, refining and shaping material goods. Certain
processes – like the production of iron and steel – need special fuels
like coke both for its energy content and as an chemical agent. These
are difficult to substitute by other types of final energy.

• The service sector, on the other hand, has a much higher flexibility
with respect to its energy consumption and requires less of it since
human labour does play the dominant role in the creation of value
added. However, the service sector requires that industrial goods like
steel and cement for buildings and roads are abundant (Steckel et al.
2013; Radebach, Schult, and Steckel 2014).

Therefore we need to come up with a way to associate the SSP pathways of
future GDP into pathways of structural composition. However, since this
translation is not the focus of this paper, we cannot spend to much effort
on it. We therefore decide to fix the shares in value added at 2010 levels.
Without diving deeper into the matter, any assumption regarding future
structural change is arbitrary, so no generality is lost by assuming fixed
sector shares.

Figure 3 shows the result of this fixation for the United States (USA),
China (CHN) and sub-saharan Africa (AFR) as well as the global results –
a graph containing the results for all regions can be found in the appendix.
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One can see that the assumption of fixed sector shares results in quite strong
differences in scenario data for the regions. This is not surprising since we
simply set in stone todays differences.
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Figure 3: Historical and scenario data (SSP2) of structual composition for
selected regions.
Source: WDI, SSP-Database, own calculations

3.3 Aggregation

The goal of this paper is to create forecasts of sectoral final energy demand
patterns on a global scale. Normally this would mean that one estimates
econometric models using only a sample of countries for which data avail-
ability is very good. The results are then transferred to the global setting
under the assumption that a relationship found in the sample is also valid
for countries not in the sample.
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Final energy category Final energy types Provided energy services

Solid fuels Coal (all types), biomass Heating, process heat, cooking, reduction agent
Liquid fuels Oil, Liquid biofuels transportation, heating, cooking, lighting
Gases Natural gas, manufactured gas, biogas heating, cooking, lighting
Heat Heat heating, process heat
Electricity Electricity all energy services

Table 1: Overview of aggregation into final energy demand categories

Our approach is different. We want to directly create an econometric
forecast using a historical dataset with at least close to global coverage.
Like this, we do not need to make any assumptions regarding the validity
of results out of sample (in the spatial dimension).

The method depicted in section (4) has higher demand to data quality
than usual panel data models. In order to estimate and check an individual
model, we need 21 years of data for each country or region: 10 years of data
out-of-sample and at least 11 years of in-sample data.

We assume that, in general, given the high quality and coverage of to-
days macroeconomic and energy specific data, the lack of data for a specific
variable means that there is no such demand. An example: There is no
district heating in Africa and nowadays there are no steam locomotives or
ships in most industrialized regions (apart from those kept and run for rea-
sons of nostalgia) and therefore no demand for solid fuels in transport. In
China, on the other hand, in some regions there are still a number of steam
locomotives in everyday active duty 5.

We aggregate country specific data into regions. A graphical overview
is shown in figure 9, table 3 in the appendix contains the associated regions
for all countries.

4 Methodology

4.1 Model space

For each final energy type and economic sector, we estimate several dozen
econometric models that can all be classified as fixed effects estimators. The
fixed effects estimators allow for region specific intercepts that are constant
over time. They are allowed to be correlated with the exogenous variables
(sectoral value added / GDP per capita, population density and urbansa-
tion) and are assumed to capture all unit specific, time constant heterogene-
ity like, e.g. climatic or geographic influences, resource endowments and
cultural differences.

5http://www.economist.com/news/china/21590921-steam-trains-struggle-remote-north-west-rarer-pandas
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The basic model is depicted by equation (1).

Desit =
K∑
k=1

βkvaksit +
J∑
j=1

γjpopdensjit +
H∑
h=1

λhurbanhit + ci + t+ uui (1)

Explanation:

• Desit is per capita demand for final energy type e in country i’s sector
s at time t.

• va is sectoral added value per capita for agriculture, industry and ser-
vices, respectively. For transport and residential final energy demand,
va represents GDP per capita.

• k = 1, ...,K, j = 1, ..., J and h = 1, ...,H are the orders of the polyno-
mials of va, popdens and urban, respectively.

• β, γ and λ are the coefficients sof the polynomials of va, popdens and
urban to be estimated, respectively.

• ci a country specific, time-constant intercept.

• t is the year of the observation, representing a linear time trend.

• uit is an error term.

We vary the lenght of the polynomials between one and five for sectoral
value added / GDP per capita and between one and three for population
density and urbanisation and estimate all combinations of the different poly-
nomials. We always include the country fixed effect. We estimate all com-
binations with and without time trend. With these variations, we arrive at
160 models for each sectoral final energy demand type. For all combinations
of sectors and energy types, we arrive at a model space comprising 3840
equations.

4.2 Model selection

We need to select models that qualify as best models from the model space
depicted in section 4.1 for each combination of final energy type and eco-
nomic sector/activity. Since already for the comparatively small model space
used in this study this is too large a task to do manually, we need model
selection criteria (MSC). These are algorithms that provide us with a nu-
merical value which can be used to decide on the best model according to
the criterion at hand.

MSC can be classified according to their data requirements. If we can
use the same data used for estimation to calculate the value of the MSC,
then we call this MSC an in-sample MSC.
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Examples of widely uses in-sample MSC are the R-squared (2) and its
adjusted counterpart (3).

1 −
∑

i

∑
t
u2it
n∑

i

∑
t(yit − ȳi)

(2)

1 − n− 1

n− k
(1 −R2) (3)

R-squared lies between 0 and 1 and depicts how much of the sample
variance can be attributed to the regressors. Its main disadvantage is that
it can never get smaller when additional regressors are included. This may
lead researchers relying on R-squared to include more and more explanatory
variables in their model in order to drive up R-squared. The adjusted R-
squared introduces a penalty for the lower degrees of freedom that result
from introducing additional regressors. Adjusted R-squared rises only if the
additional explanatory power of including an additional variable is greater
than the loss in explanatory power due to the loss in degree of freedoms
(Greene 2012).

The same holds true for the Akaike Information Criterion (AIC) (4) and
and the Schwarz or Bayesian Information Criterion (BIC) (5). Both criteria
penalize for adding further variables stronger than the adjusted R-squared,
with the BIC penalizing strongest. The theory behind the AIC and BIC is
well beyond the scope of this text, they are included here because they are
from an theoretical point of view much more accepted in-sample MSCs than
the (adjusted) R-squared.

ln(
∑
i

∑
t

u2it
n

) +
2k

n
(4)

ln(
∑
i

∑
t

u2it
n

) +
k

n
ln(n) (5)

The second class of MSCs uses different data for model estimation and
selection and are therefore called out-of-sample MSC. An econometric model
is estimated using one dataset and then its results are checked using different
data on the same variables.

Given one specific dataset and given the will to conduct model selection
out-of-sample, we have to decide on how to split up the data into subsamples
used for model estimation and model selecton. We have to decide whether
we want to split up our data in the spatial or in the temporal dimension. A
split in the spatial dimension would in our case of country-level data mean
we only use data on certain countries for estimation. Then we use the data
on the remaining countries for model selection. A split in the temporal
dimension usually means that we use data up to a certain point in time for
estimation and data after that time for model selection.
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We follow the approach by Auffhammer and Steinhauser (2012) and
use a temporal split, since like that we are able to capture unit specific
heterogeneities for all units in our dataset. Implicitely, this decision means
that we assume that unit specific heterogeneities do play a more important
role than heterogeneities in time 6

Another question arising from the necessity of splitting up a specific
dataset into two separate subsamples is the criterion by which to perform
the split: Which regions enter the estimation data set and which ones are
used for the model selection in the case of a spatial split and which years
are used for estimation and which years for model selection in case of a
temporal split? Since any hard cut-off is somewhat arbitrary, methods were
developed to overcome at least some of this arbitrariness.

The Mean Squared Forecast Error (MSFE) (6) does this by averaging a
forecast error over multiple forecasts for multiple years. T is the final year
in our historical dataset (2010), L is the number of forecast to be computed,
τ is the number of years we drop initially from our complete dataset: If
τ = 10, in the first iteration we use all data up to the year 2000 to estimate
our econometric models, then make predictions dei,t+τ for the year 2010 and
compute the squared deviation from the real, observed value in 2010. This
deviation is summed up for all regions to attain the squared forecast error.
In the next step we use all data up to the year 1999 to estimate the model,
predict a value for 2009 and again compute the squared forecast error. This
process is repeated L times and then we average the squared forecast error
over the iterations. This process is done for each model from the model
space considered model with the lowest MSFE is chosen to be the one to
have the highest predictive ability.

1

L

T−L−τ∑
t=T−τ

∑
i

(dei,t+τ − d̂ei,t+τ ) (6)

The process depicted in the paragraph above implicitly assigns equal
weights to the forecast errors of the individual countries/regions. However,
it can be argued, that for a global forecast it is more important to get the
global values right than to get the regional values right. For this reason,
we also compute the Aggregated Mean Squared Forecast error (AMSFE) (7)
where we use the respective regions population as weight. Like this, errors in
populous regions like China are weighted more heavily, leading to a selection
of a model that provide more accurate forecasts of final energy demand on
a global level.

6Some time specific heterogeneity (aka technological progress) is assumed to be cap-
tured by the inclusion of a linear time trend.
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1

L

T−L−τ∑
t=T−τ

∑
i

(popit × dei,t+τ − popit × d̂ei,t+τ ) (7)

A big advantage of both the MSFE and the AMSFE is that by testing
the predictive power of econometric models against out-of-sample data, we
have to think a lot less about correct specification of the tested model. A
model is suitable for the task – prediction – if it delivers predictions that
show small deviations from actual values. Using in-sample-model selection,
we have to be much more careful about specification issues because incorrect
specification could lead to invalidity of the model selection criteria.

However, there is also one big disadvantage in using out-of-sample model
selection criteria like the (A)MSFE : We need a higher quality of dataset,
either in spatial or in the temporal dimension. In our case of a temporal
split we need at least τ + L + 1 years of data for each region, for tau = 10
and L = 10 this means our dataset has to go back at least 21 years into the
past because we need at least two years of data to estimate the FE estimator
depicted in section (4.1).

5 Results

5.1 Global results

Electricity

Figure 4 shows the results separately for electricity for residential and trans-
port uses as well as for the industry and service sector. We leave out the
results for the agricultural sector since they are not very relevant in absolute
numbers and would only clutter the representation. They can, however, be
found in the appendix (figure 11).

In figure 4, the black lines depict historical data. The grey area is the
range of forecasts from all models in the respective model space, both for
historical and scenario data. The different coloured lines show the forecasts
from models selected by different model selection criteria (see section 4.2).
The blue and orange lines are the forecasts from the models selected by
AIC and BIC, respectively. In the case of electricity, both selection criteria
always choose the same model that gives forecasts in the middle of the range
of all forecasts. The same holds true for MSFE and AMSFE in the case of
industry (figure 4b), where both criteria select the same model depeicting
a lower increase in industrial electricity demand than the in-sample model
selection criteria.

This is different for the other sectors, where MSFE and AMSFE select
different models. For the residential (figure 4a) and transport sector (figure
4d), MSFE selects a model giving higher forecasts than in-sample selection

13



criteria while AMSFE gives lower forecasts. In the service sector (figure 4c),
all model selection criteria give very similar results and both out-of-sample
selection criteria provide slightly higher forecasts than their in-sample coun-
terparts.

Taken alltogether, all models forecast a steep increase in electricity de-
mand across the sectors. But, looking at figure 4, one has to take into
account the difference in scales. The highest absolute demand is likely to
come from the industrial sector, increasing from around 20 EJ to somewhere
between 70 and 90 EJ in 2040, conditional on the model selection criterion.
For both residential and service sector energy demand is forecasted to rise
from less than 20 EJ to between 50 and a bit less than 75 EJ in 2040. The
transport sector shows a large increase but on low absolute levels.

Liquid fuels

Figure 5 shows the results for liquid fuels (again, the results for the agricul-
tural sector are shown in the appendix in figure 12. Here, the differences
between the models selected by the different criteria are more distinct than
for electricity. Except for the case of the transport sector, AIC and BIC
select the same models. The models selected by in-sample model selection
criteria perform poor even in predicting the historical data – this is especially
pronounced in the cases of industry and services. It is peculiar, in general,
that all models predict a lower liquid fuel demand than actually observed at
least for the first decade of historical data – in the case of industry even a
few years into the 1980s. The model selected by MSFE for residential liquid
fuel demand is rather on the extreme edge of the forecasting range, even
more so than the model selected by AIC/BIC. The AMSFE selection seems
very plausible and continues the stagnant historical development in spite of
a rising and wealthier world population (see figure 2). For industry, both
MSFE and AMSFE select a model that continues historical trends. In case
of services, MSFE and AIC/BIC select similar models that rather show a
slight break in long-run historical liquid fuel demand against the backdrop
of a large increase in value added provided by the service sector (see fig-
ure 3). AMSFE results for the service sector depict a liquid fuel demand
slightly going down over the next decades. Finally, the range of forecasts in
the transport sector is smallest and all models forecast a steep rise in liquid
fuel demand from the transport sector with the AMSFE giving results in
the middle of the range.

Solid fuels

Figure 6 shows the range of results for solid fuels (coal, biomass). The
results are somewhat similar to those of the liquid fuel demand: The mod-
els selected by in-sample criteria show a relatively bad fit for the historical
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data as well as not very convincing forecasts for the residential sector. The
model selected both by MSFE and AMSFE show a clearly declining trend
in residential solid fuel demand – and are in contrast to the increased use
of solid fuels in households over the first decade of the current century. The
(A)MSFE selected model probably takes into account past trends in switch-
ing to cleaner fuels like kerosene, LPG, fuel oil and natural gas for cooking
and heating albeit their higher costs. It might be that these tendencies have
been weakened recently due to reasons like nostalgia (fireplaces at home)
and economic necessity due to the financial crisis in the years since 2008.

5.2 Regional results

In this section we compare the composition of final energy demand across
regions. Since it became clear from section 5.1 that the AMSFE delivers the
most convincing forecast, we here focus exclusively on the results delivered
by this model selection criterion.

We have 25 regions. It is not possible nor worthwhile to go into detail
for every region. We therefore focus on regions of special interest – see table
2 for details:

• The United States (USA) are the largest economy today. Both their
population and their per capita income have been rising in the past
and are projected to further rise over the next decades continuing past
trends.

• China (CHN) was and is the most populus country in the world and
has shown to be an extremely dynamic economy over the past decades.
Its population is projected to stagnate while Chinese per capita income
is projected to increase more than fourfold.

• Sub-saharan Africa (AFR) represents only a small fraction of world
GDP today, but is projected to have nearly 1,5 billion inhabitants in
2040 in SSP2 compared to less than 800 million today. So even with
a comparatively low income in per capita terms, sub-saharan Africa
will make up a significant share of the worlds economy and therefore
of its energy demand.

• India (IND) has a population equal to China today. In contrast to
China, both Indias population and its per capita income is projected
to increase.

The discussion in section (5.1) has shown that the models selected by
MSFE and AMSFE generally provide different results. The MSFE im-
plicitely assigns equal weights to all regions in the computation of the fore-
cast error: China with its more than one billion inhabitants then has the
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Population [millions] GDP per capita [I$05]

country 1980 2010 2040 1980 2010 2040

USA 230 310 383 25021 42287 63461
AFR 346 778 1491 1315 1523 4680
CHN 971 1326 1349 1388 7859 32849
IND 700 1225 1646 1075 3432 11575

Table 2: Overview of historical and scenario (SSP2) data for USA, China
(CHN), India (IND) and sub-saharan Africa (AFR)

same weight as the United States. The AMSFE corrects for that by mul-
tiplying the forecast error with the regions population, therefore assigning
more weight to region with greater population. Figures (7) and 8) compare
the results of AMSFE and MSFE, respectively.

The most pronounced differences can be seen between the results for
China and India: MSFE chooses a model that projects a lower energy
demand for China and a higher one for India compared to AMSFE. The
AMSFE assigns a higher value to the forecasting error for India, since over
the model selection time-frame 2001-2010, it had a lower population than
China.

There are hardly any differences in the total final energy demand for
the USA. However, electricity does play a more important role when model
selection is done by MSFE.
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6 Conclusion

We have shown that our approach is fit to model the future development
of final energy demand. Our results indicate that for SSP2, final energy
demand could rise fourfold until 2040.

Especially for develping regions, results show a strong increase in the
demand for fossil fuels. This demand could only be fulfilled by coal. Since
coal has the highest carbon intensity of all final energy types, this poses a
significant threat to the world climate. Policy measures will be necessary to
change these demand patterns towards being more sustainable.
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Region Contained countries

AFR AGO, ATF, BDI, BEN, BFA, BWA, CAF, CIV, CMR, COD,
COG, COM, CPV, DJI, ERI, ETH, GAB, GHA, GIN, GMB,
GNB, GNQ, IOT, KEN, LBR, LSO, MDG, MLI, MOZ, MRT,
MUS, MWI, MYT, NER, NGA, REU, RWA, SDN, SEN, SHN,
SLE, SOM, STP, SWZ, SYC, TCD, TGO, TZA, UGA, ZMB,
ZWE

ARG ARG
AUS AUS
BRA BRA
CAN CAN
CHN CHN, HKG, MAC
DEU DEU
EUR AUT, BEL, BGR, CYP, CZE, DNK, ESP, EST, FIN, GIB,

GRC, GRL, HUN, IRL, LTU, LUX, LVA, MLT, NLD, POL,
PRT, ROU, SVK, SVN, SWE

FRA FRA
GBR GBR
IDN IDN
ITA ITA
JPN JPN
KOR KOR
LAM ABW, AIA, ATG, BHS, BLZ, BMU, BOL, BRB, BVT, CHL,

COL, CRI, CUB, CYM, DMA, DOM, ECU, FLK, GLP, GRD,
GTM, GUF, GUY, HND, HTI, JAM, LCA, MSR, MTQ, NIC,
PAN, PER, PRI, PRY, SGS, SLV, SUR, TCA, TTO, URY,
VCT, VEN, VGB, VIR

MEA ARE, ARM, AZE, BHR, DZA, EGY, ESH, GEO, IRN, IRQ,
ISR, JOR, KAZ, KGZ, KWT, LBN, LBY, MAR, OMN, PAK,
QAT, SAU, SYR, TJK, TKM, TUN, UZB, YEM

MEX MEX
OAS AFG, ASM, BGD, BRN, BTN, COK, FJI, FSM, GUM, KHM,

KIR, LAO, LKA, MDV, MHL, MMR, MNG, MNP, MYS, NCL,
NIU, NPL, NRU, PCN, PHL, PLW, PNG, PRK, PYF, SGP,
SLB, THA, TLS, TON, TUV, TWN, VNM, VUT, WLF, WSM

ROW ALB, BIH, BLR, CCK, CHE, CXR, FRO, HMD, HRV, ISL,
MDA, MKD, NFK, NOR, NZL, TKL, UKR

RUS RUS
TUR TUR
USA SPM, UMI, USA
ZAF ZAF

Table 3: Regional mapping

19



0

25

50

75

1980 2000 2020 2040
year

E
J

MSC
AIC
AMSFE
BIC
History
MSFE

(a) Residential

0

50

100

150

1980 2000 2020 2040
year

E
J

MSC
AIC
AMSFE
BIC
History
MSFE

(b) Industry

0

25

50

75

1980 2000 2020 2040
year

E
J

MSC
AIC
AMSFE
BIC
History
MSFE

(c) Services

0.0

0.5

1.0

1.5

2.0

1980 2000 2020 2040
year

E
J

MSC
AIC
AMSFE
BIC
History
MSFE

(d) Transport

Figure 4: Results for global electricity demand
black: historical data
coloured lines: model selected by respective selection criterion (red: MSFE,
green: AMSFE, blue: AIC, orange: BIC), see text
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Figure 5: Results for global liquid fuel demand
black: historical data
coloured lines: model selected by respective selection criterion (red: MSFE,
green: AMSFE, blue: AIC, orange: BIC), see text
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Figure 6: Results for global solid fuel demand
black: historical data
coloured lines: model selected by respective selection criterion (red: MSFE,
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Figure 7: Final energy demand by region. Model selection criteria is
AMSFE, future scenario is SSP2
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Figure 8: Final energy demand by region. Model selection criteria is MSFE,
future scenario is SSP2
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Figure 10: Historical and scenario data (SSP2) of structual composition.
Source: WDI, SSP-Database, own calculations26
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Figure 11: Results for global electricity demand in agriculture
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Figure 12: Results for global liquid fuel demand in agriculture
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Figure 13: Results for global solid fuel demand in transport
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Figure 14: Final energy demand by region. Model selection criteria is
AMSFE, future scenario is SSP2 29


