

28/05/2019 EUBCE Prepared by: Miloud Ouadi m.ouadi@bham.ac.uk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792216.

flexJET project

Project overview

- Total costs: 15 M Euro
- EU financing: 10 M Euro
- H2020 LCE-20 Programme
- Duration: 48 Months (2018-2022)
- Consortium with 13 partners from 5 EU countries

Aim

• To build a **pre-commercial demonstration plant** for the production of **SAF** derived from **digested food waste** and **waste vegetable oil** while mapping the full economic social and environmental impact of the technology.

EU sustainable aviation vision

- * Vision for a climate neutral economy by 2050
- * Bound Paris agreement to keep global temperature rise to below 1.5 deg C
- * RED amended in 2015 to include a voluntary opt in for aviation taken up by UK
- * EU has invested approx. Euro 5 Billion over last 10 Years to support these commitments
- * In 2016 aviation accounted for 3.6% of all EU28 GHG emissions (13.4% from transport sector)
- * Aviation emissions more than doubled since 1990 (will continue to become more significant as other sectors decarbonise)

Partners

Technology (SABR-TCR / PSA)

Feedstock

Products Tests

Supply Chain

Social and Environmental Sustainability Analysis

Dissemination

etaflorence*renewableenergies

• From feedstock diversification assessment

• Through environmental and social sustainability evaluation of the process

• To commercial uptake facilitation of cost-competitive aviation fuel

By contributing to the Renewable Energy Directive targets for renewable energy and to the fulfillment of the CORSIA targets

Kick -off
April 2018

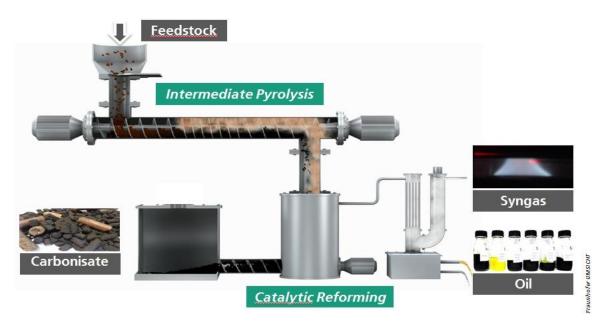
Plant Design
Mid 2019

Demo Plant
Mid 2020

End 2021

End of Project
Mid 2022

Objectives


- □ Demonstrate the technical viability of aviation fuel production from waste biomass compliant under ASTM D7566
- □ Evaluate the environmental and social sustainability of the process
- □ Contribute to the Renewable Energy Directive targets for renewable energy
- □ Facilitate towards commercial uptake of the technology

Combination of Two Innovative Technologies

TCR® (Thermo-Catalytic Reforming)

SABR (Transesterification)

- □ TCR (Thermo-Catalytic Reforming)
- □ 500 Kg/h Biomass Plant

- □ TCR (Thermo-Catalytic Reforming)
- □ 30 Kg/h Biomass Plant

TCR Feedstock

TCR Crude Products

BIO-OIL

C	76.6 wt.%
Н	7.7 wt.%
Ν	2.2 wt.%
S	0.6 wt.%
O (diff.)	11.2 wt.%
H_2O	1.7 wt.%
Ash	< 0.05 wt.%
TAN	4.9 mg KOH/g
HHV	33.9 MJ/kg

- miscible with fossil/bio fuels
- low tar content and acidity
- low fraction of nonvolatiles

SYNGAS

 $\begin{array}{lll} \text{H}_2 & 35 \pm 3 \text{ V/V\%} \\ \text{CO} & 15 \pm 2 \text{ V/V\%} \\ \text{CO}_2 & 25 \pm 1 \text{ V/V\%} \\ \text{CH}_4 & 7 \pm 2 \text{ V/V\%} \\ \text{C}_x \text{H}_y & 2 \pm 1 \text{ V/V\%} \\ \text{N}_2 \text{ (diff.)} & 16 \pm 2 \text{ V/V\%} \\ \text{HHV} & 11 \text{ MJ/m}^3 \end{array}$

tar and dust free gas H₂ over 30 v/v%

CHAR

С	65.0 wt.%
Н	1.2 wt.%
Ν	1.5 wt.%
S	0.3 wt.%
O (diff.)	2.2 wt.%
H_2O	0.7 wt.%
Ash	29.1 wt.%
HHV	23.9 MJ/kg

- high mechanical stability
- transportable and storable
- ■low-odour

TCR Oil After Upgrading

34.0 MJ/kg

2.1 mg KOH/g

Viscosity 4,428 mm²/s

Density 1014.4 kg/m³

TCR® BIO-OIL

LHV

С	77.6 wt.%
Н	8.0 wt.%
N	4.6 wt.%
S	0.6 wt.%
O (diff.)	7.0 wt.%
H ₂ O	2.2 wt.%
Ash < 0	0.005 wt.%

miscible with fossil/bio fuels

low tar content and acidity low fraction of nonvolatiles

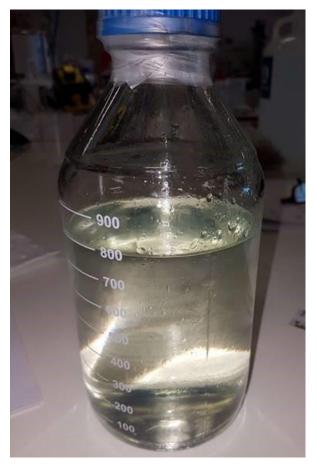
TCR® BIO-OIL, HDO

C 86.2 wt.%
H 13.0 wt.%
N < 0.5 wt.%
S 0.01 wt.%
O (diff.) < 0.7 wt.%
H₂O 0.003 wt.%
Ash < 0.005 wt.%

LHV 42.25 MJ/kg TAN 0.0 mg KOH/g Viscosity 0,97 mm²/s Density 815.7 kg/m³

Outstanding fuel quality

- SABR Plant Green Fuels
- □ Transesterification (50,000 Litres Per Day FAME Production)



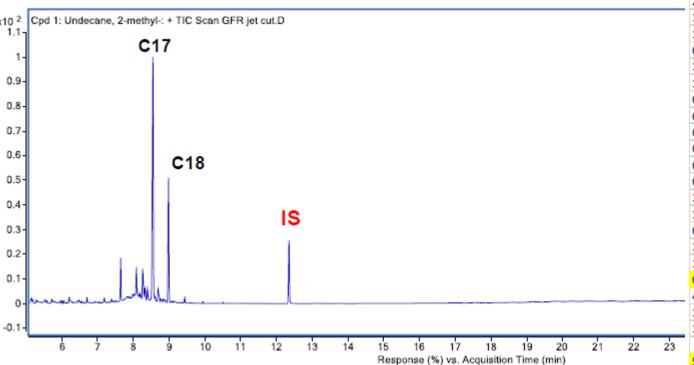
HEFA Production

- * Optimisation:
 - * HDO reaction temperature
 - * HC reaction temperature
 - * H2 pressure

Fractional distillation results:

- Up to 55 vol.% at Jet Fuel fraction
- 45 vol.% Others(including green diesel and gasoline)

Sample after HDO + HC



Results

HEFA Production – GC-MS Jet Fuel Cut

	CAS	Name	Mass (DB)	Formula (D	Area	RT
	7045-71-8	Undecane, 2-methyl-	170.2	C12H26	273375	6
	1002-43-3	Undecane, 3-methyl-	170.2	C12H26	177898	6.054
	08/02/3913	1-Octanol, 2-butyl-	186.2	C12H26O	685417	6.2
	08/02/3913	1-Octanol, 2-butyl-	186.2	C12H26O	58053	6.33
	2425-77-6	1-Decanol, 2-hexyl-	242.3	C16H34O	130120	6.378
	1000382-54-3	Carbonic acid, eicosyl vinyl ester	368.3	C23H44O3	206785	6.443
	1000382-54-3	Carbonic acid, eicosyl vinyl ester	368.3	C23H44O3	150025	6.551
	629-50-5	Tridecane	184.2	C13H28	348101	6.702
	1000382-54-3	Carbonic acid, eicosyl vinyl ester	368.3	C23H44O3	129790	6.972
	14905-56-7	Tetradecane, 2,6,10-trimethyl-	240.3	C17H36	613082	7.183
	638-36-8	Hexadecane, 2,6,10,14-tetramethyl-	282.3	C20H42	399877	7.383
	629-62-9	Pentadecane	212.3	C15H32	2826201	7.642
	638-36-8	Hexadecane, 2,6,10,14-tetramethyl-	282.3	C20H42	374519	7.713
	638-36-8	Hexadecane, 2,6,10,14-tetramethyl-	282.3	C20H42	2407773	7.848
	629-94-7	Heneicosane	296.3	C21H44	1778818	7.993
	629-94-7	Heneicosane	296.3	C21H44	4223213	8.085
	13475-75-7	Pentadecane, 8-hexyl-	296.3	C21H44	1020666	8.172
	13475-75-7	Pentadecane, 8-hexyl-	296.3	C21H44	537466	8.215
	629-94-7	Heneicosane	296.3	C21H44	3256478	8.258
	13475-75-7	Pentadecane, 8-hexyl-	296.3	C21H44	1455590	8.323
	1560-89-0	Heptadecane, 2-methyl-	254.3	C18H38	1506823	8.393
	629-78-7	78-7 Heptadecane		C17H36	20811011	8.544
_	45235-48-1	1-Decanol, 2-octyl-	270.3	C18H38O	518202	8.609
	110225-00-8	1-Dodecanol, 2-hexyl-	270.3	C18H38O	1675503	8.69
	110225-00-8	1-Dodecanol, 2-hexyl-	270.3	C18H38O	587325	8.766
	04/11/2665	Trihexadecyl borate	734.8	C48H99BC	441472	8.836
	593-45-3	Octadecane	254.3	C18H38	8499693	8.982
	629-92-5	Nonadecane	268.3	C19H40	438586	9.436
	1731-92-6	Heptadecanoic acid, methyl ester	284.3	C18H36O2	4455813	12.353

Power

HEFA – ASTM D7566 **Process Flow Diagram** Blend Jet Hydrogen A1 Used Cooking Oil Aviation FuelMatic® Fractionation HDO/HC **FAME** Fuel Vegetable Oil Diesel / Transport Green Hygear Gasoline Syngas Fuel Hydrogen **PSA** Fraction Glycerol (option) Biocrude Aviation HDO/HC Fractionation Fuel Oil Refinery Organic **TCR®** Co-Waste processing Biochar Heat and Gasifier

(option)

Plant Site Berkeley UK

Prince Charles Site Visit

- Invitation to open plant
- Invitation to BBC for dissemination
- First UK plant delivering SAF

flexJET Advantages

- * High feedstock flexibility
- * Green Hydrogen
 - * Hydrogen separated from TCR® Syngas by PSA to be used in HDO / HC
- * Side and end products flexibility
- * Highly scalable (small scale decentralised facilities can be built)
- * It can be integrated into existing infrastructure

CONSORTIUM

Partners

www.flexjetproject.eu

info@flexjetproject.eu

