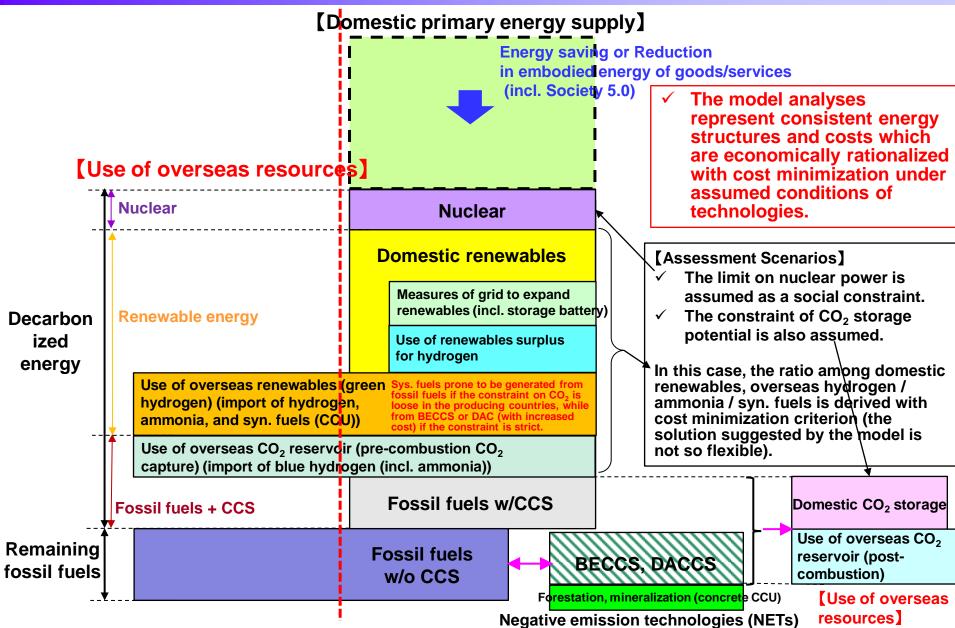
IRENA Forum June 8th, 2021

Scenario Analyses for 2050 Carbon Neutrality in Japan


Keigo Akimoto

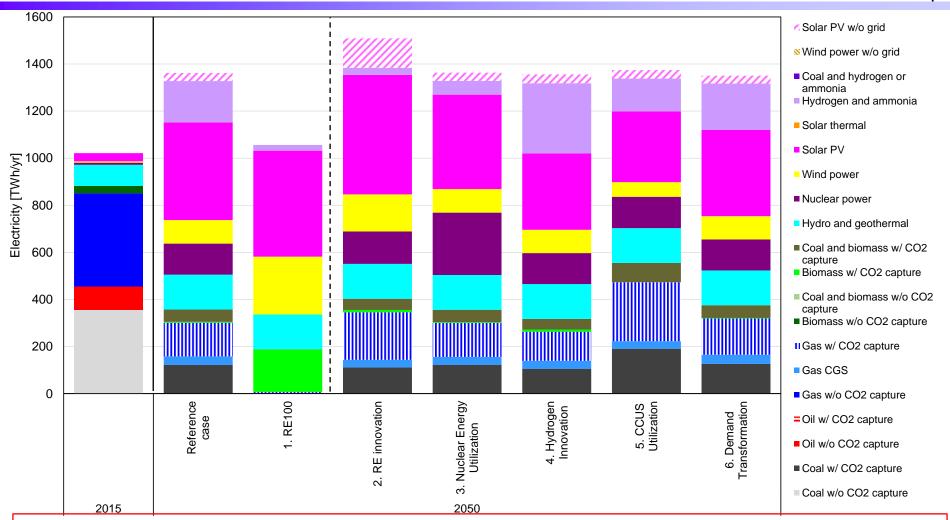
Systems Analysis Group Research Institute of Innovative Technology for the Earth (RITE)

Image of Primary Energy in Japan for Net Zero Emissions

Scenario Assumption for GHG Net Zero Emissions in Japan and Share of Renewables in Total Electricity Supply in 2050

٩	un	~ ~		
1	fo	r tř	e	Ea
		2	•	
		- 7	•	

Scenario	Cost of renewabl e energy	Ratio of nuclear power	Cost of hydrogen	CCUS (Storage potential)	Fully autonomous driving (Car ride sharing)	Share of RE in total electricity		
Reference Case*1	Standard	10%		Domestic storage:91MtCO ₂ /yr,		54% (Optimization results)		
1. Renewable Energy 100% (RE 100)	cost	0%		Overseas transportation: 235MtCO ₂ /yr		Almost 100% (Assumption)		
2. Renewable Energy Innovation	Low cost	10%	Standard cost	Standard cost	Standard cost	Standard cost		63% (Optimization results)
3. Nuclear Power Utilization ^{*2}		20%		Domestic storage: 91MtCO ₂ /yr,	Standard assumption (no fully autonomous	53% (Optimization results)		
4. Hydrogen Innovation	Standard cost			Hydrogen production such as water electrolysis, hydrogen liquefaction facility cost: Halved	Overseas transportation: 235MtCO ₂ /yr	cars)	47% (Optimization results)	
5. CCUS Utilization			10%		Domestic: 273MtCO ₂ /yr、 Overseas: 282MtCO ₂ /yr		44% (Optimization results)	
6. Demand Transformation			Standard cost	Domestic: 91Mt, Overseas: 235Mt	Realization and diffusion of fully autonomous driving and expansion of car ride sharing after 2030, and decrease in material production due to reduction of the number of automobiles	51% (Optimization results)		


*1: There is no feasible solution without DAC, and DAC is assumed to be available in all scenarios for carbon neutrality by 2050 in Japan.

*2: Nuclear power utilization scenarios up to the share of 50% are also examined.

Electricity Supply in Japan in 2050

4

✓ Increases in integration costs are observed in the case where renewable energy share is higher than that in the Reference case. Especially for the RE100 case, a surge in integration costs significantly raises marginal cost of electricity supply, causing considerable decrease in electricity demand. An increase in BECCS instead of fossil fuel with CCS is observed for supply-demand balance.

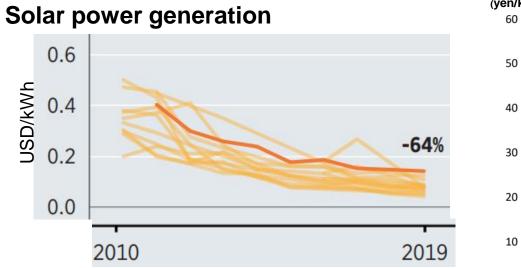
Marginal electricity supply costs for carbon neutrality in 2050 : Japan and other developed countries

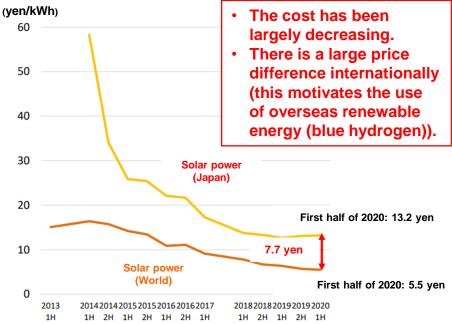
5

	Marginal cost of electricity [US\$/MWh]		Model estimation for 2020	Reference Case ^{*1}	2. Renewable Energy Innovation
Reference Case ^{*1}	221	Japan	123	221	198
1. Renewable Energy 100% (RE 100)	485	US	57	99	87
2. Renewable Energy Innovation	198	UK	99	201	176
3. Nuclear Power Utilization ^{*2}	215~177	France	110	160	147
4. Hydrogen Innovation	213	Germany	115	188	164
5. CCUS Utilization	207	North Europe [US\$/MWh]	79	127	111
6. Demand Transformation	221	Note: The costs exclude power transmission and distribution costs excluding grid integration costs of VRE.			

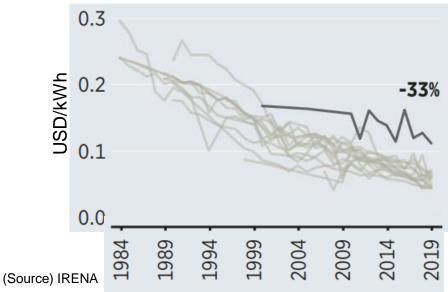
✓ For all the countries, marginal electricity costs increase for achieving carbon neutrality. In Japan larger increases of the costs are estimated due to higher costs of renewables and the grid integration costs, and CO2 storage potentials.

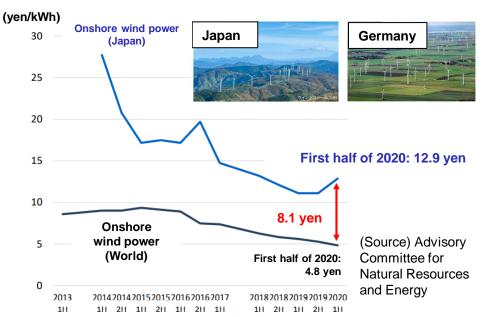
Appendix

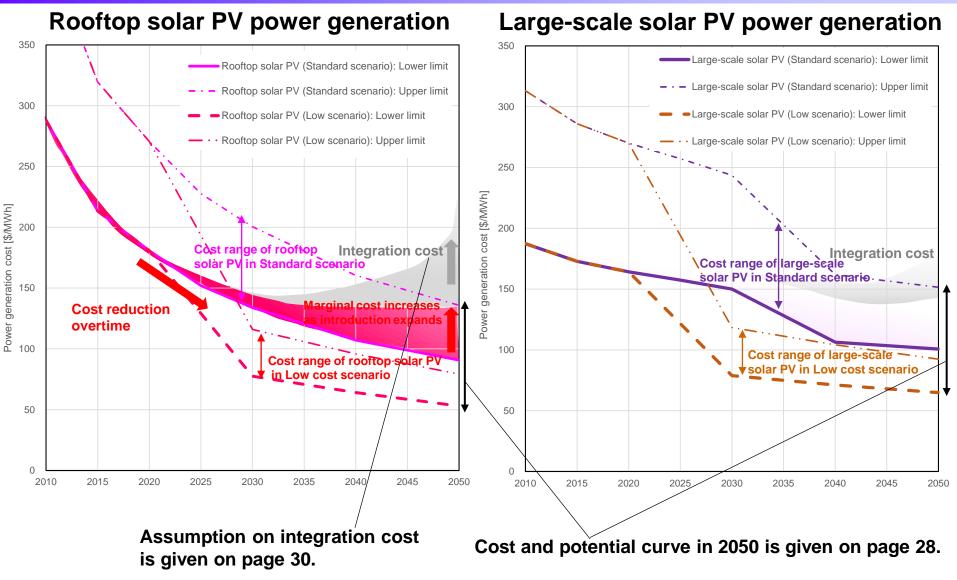

Energy Assessment Model: DNE21+ (Dynamic New Earth 21+)



- Systemic cost evaluation on energy and CO₂ reduction technologies is possible.
- Linear programming model (minimizing world energy system cost; with 10mil. variables and 10mil. constrained conditions)
- Evaluation time period: 2000-2100
 Representative time points: 2005, 2010, 2015, 2020, 2025, 2030, 2040, 2050, 2070 and 2100
- World divided into 54 regions
 Large area countries, e.g., US and China, are further disaggregated, totaling 77 world regions.
- Interregional trade: coal, crude oil/oil products, natural gas/syn. methane, electricity, ethanol, hydrogen, CO₂ (provided that external transfer of CO₂ is not assumed in the baseline)
- Bottom-up modeling for technologies on energy supply side (e.g., power sector) and CCUS
- For energy demand side, bottom-up modeling conducted for the industry sector including steel, cement, paper, chemicals and aluminum, the transport sector, and a part of the residential & commercial sector, considering CGS for other industry and residential & commercial sectors.
- Bottom-up modeling for international marine bunker and aviation.
- Around 500 specific technologies are modeled, with lifetime of equipment considered.
- Top-down modeling for others (energy saving effect is estimated using log-term price elasticity.
- Regional and sectoral technological information provided in detail enough to analyze consistently.
- For analyzing the 2050 carbon neutrality in Japan, the integration costs of VRE are estimated by using a generation mix model having five regions within Japan and interregional grid connections developed by the University of Tokyo and IEEJ, and they are integrated into the DNE21+.
- Analyses on non-CO₂ GHG possible with another model RITE has developed based on US EPA's assumptions.

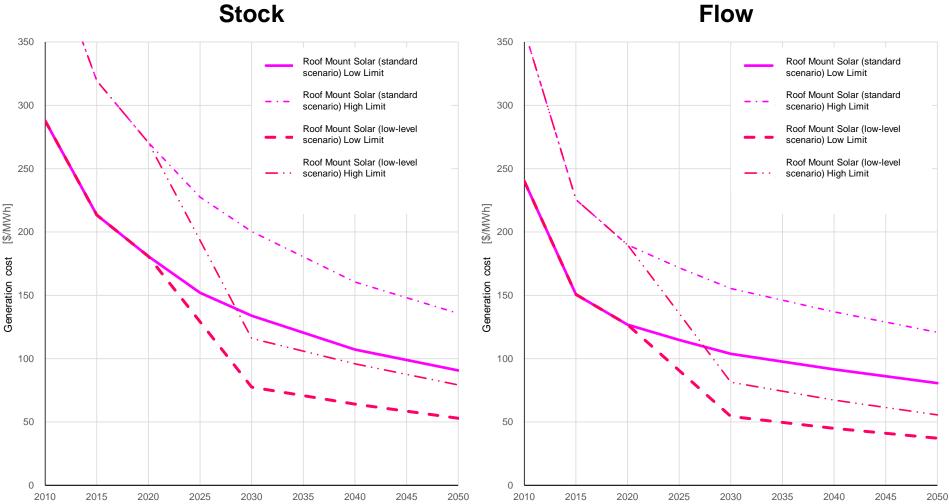

Changes in Solar & Wind Power Generation Costs





Wind power generation

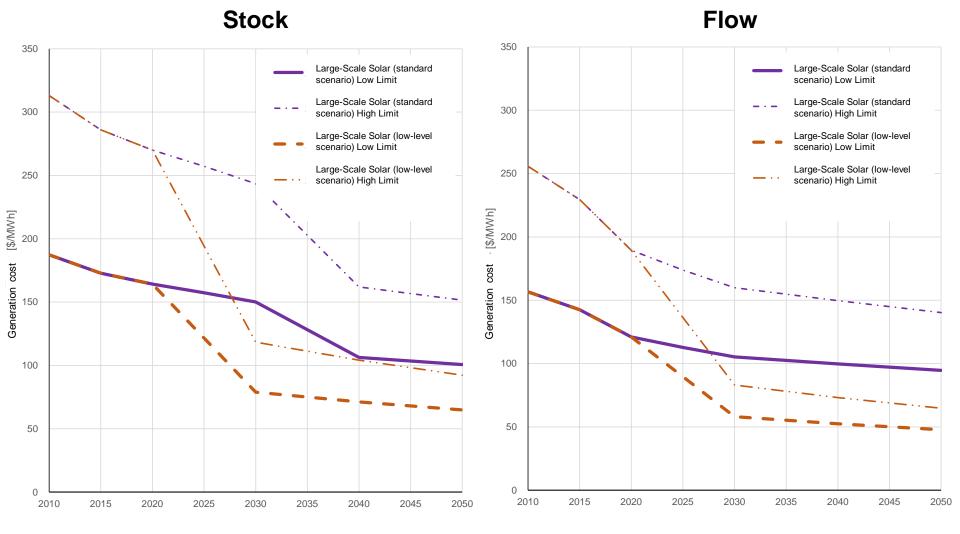
Assumption for Solar PV Power Generation Costs in Japan : Time Series


*It should be noted that this is the average cost of the facility stock installed at each point in time, and is not the cost limited to new facility installed at that point in time.

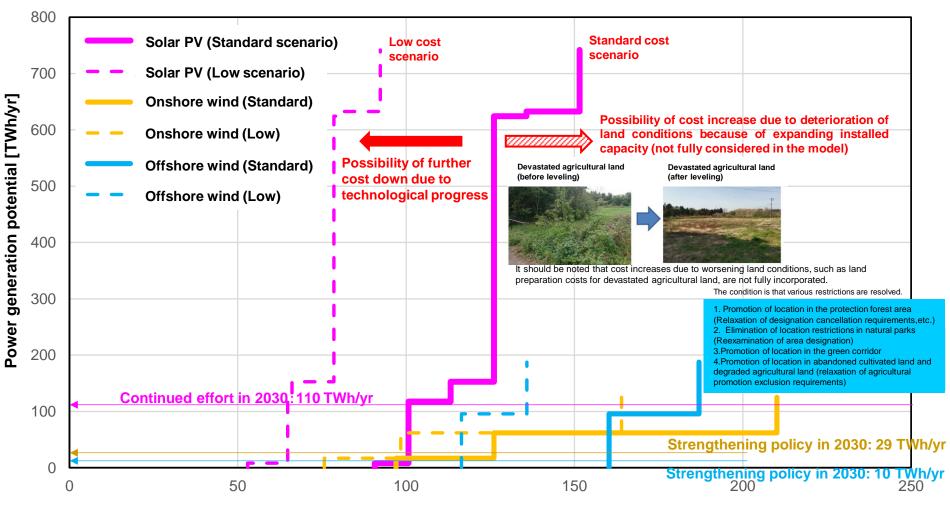
(Note) The gradation part is just an image of model calculation.

Assumption for Rooftop Solar PV Power Generation Cost in Japan: Time Series

10



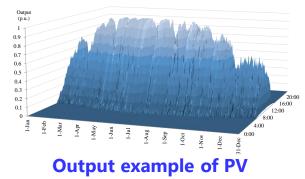
Flow

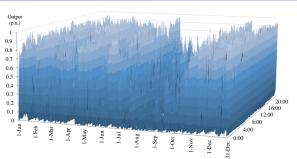

Assumption for Large-Scale Solar PV Power Generation Cost in Japan: Time Series

11

Assumption for Japan's Variable Renewable Energy Cost and Potential in 2050

Power generation cost [\$/MWh]


*Cost and potential of solar PV power generation is estimated by RITE based on the GIS data for the amount of solar radiation and land use, and facility costs, etc. Both rooftop and large-scale solar power generation are included in this Figure. Cost and potential of onshore wind power generation is estimated by RITE based on the GIS data for wind conditions and land use, and facility costs, etc.


Assumptions for Estimating Integration Cost in the Univ. Tokyo - IEEJ Model

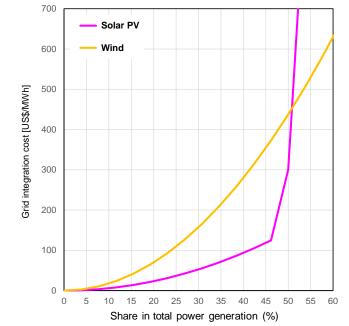
Regional aggregation

Divide Japan into 5 regions: [1] Hokkaido, [2] Northeastern area, [3] Tokyo, [4] Western area other than Kyushu, [5] Kyushu

Output example of wind power

Considered in modeling • • Output control, power storage system (pumped hydro, lithium-ion battery and hydrogen storage), reduction of power generation facility utilization, inter-regional power transmission lines, electricity loss in storage and transmission

Not considered in modeling • • • Intra-regional power transmission lines, power grid, influence of decrease of rotational inertia, grid power storage by EV, prediction error of VRE output, supply disruption risk during dark doldrums


Power storage system

Mainly with Lithium-ion battery (setting 150\$/kWh in 2050 based on estimation by the National Renewable Energy Laboratory (NREL)), it is assumed that existing pumped-storage hydropower and hydrogen storage will be used together.

Cost of interconnection lines

With reference to the plan by the Organization for Crossregional Coordination of Transmission Operators, costs of interconnection lines are assumed to be 200,000 yen/kW between areas [1] [2] and [3][4], and 30,000 yen/kW in other areas, with an annual expense ratio of 8%. Underground transmission lines and submarine cables between Hokkaido and Tokyo are not considered.

Marginal cost of grid integration for VRE in Japan

Assumption for Nuclear Power Generation Cost

14

Veer	Facility co	ost (\$/kW)	Power generation unit price (\$/MWh)		
Year	Year 2000 price	Year 2018 price	Year 2000 price	Year 2018 price	
2020	2763	4029	75	110	
2030	2779	4053	76	111	
2050	2794	4075	78	114	
2100	2824	4117	79	115	

*1 The figures in the table are assumed values for Japan. For the rest of the world, location factors are multiplied, resulting in slightly different assumptions.

*2 Since the base year of the model is 2000, the 2000 price is also shown; the conversion from the 2000 price to the 2018 price is multiplied by 1.46 (based on CPI of U.S.).

*3 The conversion to cost per unit of electricity generated is based on a capacity factor of 85%.

Assumption for CO₂ Capture Technology

R	П		
		e of Innovati or the Earth	

15

	Capital costs (price in 2000) (\$/kW)	Generating efficiency (LHV%)	CO ₂ recovery rate (%)
IGCC/IGFC with CO ₂ Capture ^{*1}	2800 – 2050	34.0 – 58.2	90 – 99
Natural gas oxy-fuel power*1	1900 – 1400	40.7 – 53.3	90 - 99
	Capital costs (price in 2000) (1000\$/(tCO2/hr))	Required power (MWh/tCO2)	CO ₂ recovery rate (%)
Post-combustion CO ₂ capture from coal-fired power plants ^{*1}	851 – 749	0.308 – 0.154	90
Post-combustion CO ₂ capture from natural gas-fired power plants ^{*1}	1309 – 1164	0.396 – 0.333	90
Post-combustion CO ₂ capture from biomass-fired power plant ^{*1}	1964 – 1728	0.809 – 0.415	90
CO ₂ capture from gasification ^{*1}	62	0.218	90 – 95
CO ₂ capture from steelworks blast furnace gas ^{*1}	386 - 319	0.171 – 0.150	90
	Capital costs (price in 2000) (1000\$/(tCO2/hr))	Required fuel (GJ/tCO2) Recovered power (MWh/tCO2)	CO ₂ recovery rate (%)
CO ₂ capture from clinker manufacturing ^{*2}	2485 - 2246	4.87 – 3.66 0.199 – 0.150	90

*1 The range of values in the table indicates improvement from 2015 to 2100.

*2 It is assumed that the assumed values have a range shown in the table depending on the fuel type used in the kiln body, CO2 capture, and compression equipment.

Note) It is 2000 price. The US consumer price index (CPI) in 2018 is 1.46 when the CPI in 2000 is 1.

Not only the CO_2 capture technologies in the power sector, but also CO_2 capture from gasification (during hydrogen production) and CO_2 capture from steelworks blast furnace gas and from clinker manufacturing are explicitly modeled.

Assumption for CO₂ Transportation and Storage

16

	CO ₂ storage	potentials (GtCO ₂)	【References】 IPCC SRCCS (2005)	Storage costs (\$/tCO ₂)*1	
	Japan	World	(GtCO2) (
Depl. oil well (EOR)	0.0	112.4	675–900	92 – 227 ^{*2}	
Depl. gas well	0.0	147.3 – 241.5	873-900	10 – 32	
Deep saline aquifer	11.3	3140.1	10 ³ —10 ⁴	5 – 85	
Coalbed (ECBMR)	0.0	148.2	3–200	47 – 274 ^{*2}	

Note 1: It is assumed that the CO2 storage potentials of depl. gas well could be expanded to the upper limit in the table with the increase of future mining volume.

Note 2: It is assumed that the storage costs could rise within the range in the table with the increase of accumulated storage amount.

*1 The costs for CO_2 capture are not included. They are assumed separately.

*2 Oil and gas profits from enhanced oil recovery and enhanced methane recovery are not included in this figure, but they are assumed separately.

- The constraint on CO₂ storage expansion is assumed considering the difficulties of its rapid expansion, e.g. limited number of drilling rigs; storage can be expanded by 0.02%/yr until 2030 and afterwards by 0.04%/yr for domestic/regional total storage implementation in the baseline scenario. (The maximum storage potential in 2050 is 91MtCO₂/yr in Japan's case, where CCS is assumed to be available after 2030.)
- It can be expanded up to 3 times (273 MtCO2/yr) that in CCUS innovation scenario. (Total storage potential is fixed.)
- <u>CO₂ transportation cost</u>
- CO₂ transportation costs from the sources to the reservoirs are assumed separately as 1.36\$/tCO₂ (per 100km) and 300km for average transport distance in Japan's case.
- For large area countries which are disaggregated in the models (US, Russia, China and Australia), the interregional CO₂ transportation costs are estimated according to the transportation distance.
- Cross-border CO₂ transportation is also assumed. In Reference scenario, the upper limit of export from Japan is 235 MtCO₂ (equivalent to one-sixth of 2013 GHG emissions). (In CCUS utilization scenario, it is 282 MtCO₂ (equivalent to one-fifth of 2013 emissions)).

Assumption for Direct Air Capture (DAC)

DAC is a technology to capture atmospheric CO₂ at low level of about 400ppm, requiring more amounts of energy than capturing exhaust gas emissions from fossil fuels combustion.

17

- On the other hand, DACCS (up to storage) can achieve negative emissions.
- **Required energy (horizontal** It is economical to deploy in area close axis), Land areas (color), to CO2 storage and where energy supply Investments (circle size) etc. BECCS DAC Land is available at low cost such as low per year. requirements 720 1.040 3.0 (Mha per yr) cost PV. 300 1000 Negative emissions (Gt Ceq 2.5 800 AR 2.0 600 1.5 400 1.0 200 370) <1 0.5 EW: Enhanced weathering AR: Afforestation and reforestation -200 -100 produced 100 required 200 Smith et al. (2015) Climeworks Energy (EJ per year)

Assumed energy consumption and facility costs of DAC in 2020 based on M. Fasihi et al., (2019): <u>This analyses adopt "Conservative" among 2 scenarios, "Base" and "Conservative", by Fasihi et al.</u>

	Energy consumption (/tCO2)			Facility costs (Euro/(tCO2/yr))		
		2020	2050	2020	2050	
High temperature (electrification) system (HT DAC)	Elec. (kWh)	1535	1316	815	222	
Low temperature systems	Heat (GJ)	6.3 (=1750 kWh)	4.0	730	100	
(LT DAC): use of hydrogen or gas for heat	Elec. (kWh)	250	182		199	

Assumption for Hydrogen Production and Transport-Related Technologies

18

Hydrogen production technologies

	Facility cost (US\$/(toe/yr))	Conversion efficiency (%)
Coal gasification	1188 - 752	60%
Gas reforming	963 - 733	70%
Biomass gasification	1188 - 752	60%
Water electrolysis	2050 - 667	64 - 84%

Liquefaction technology

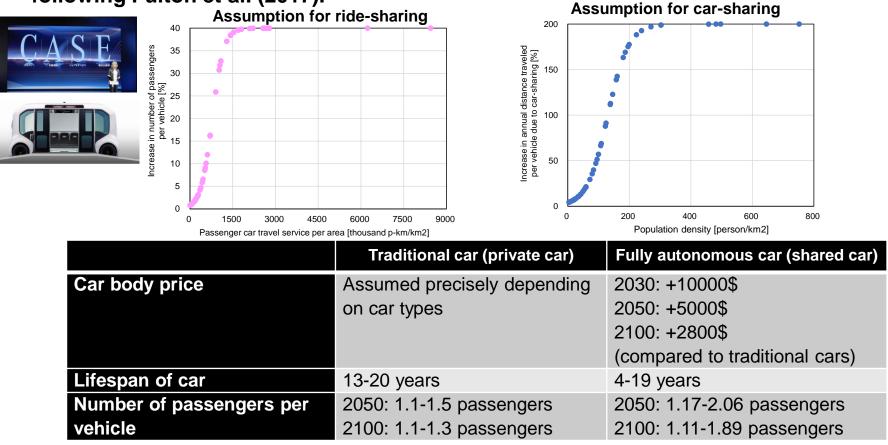
	Facility cost (US\$/(toe/yr))	Electricity consumption (MWh/toe)
Natural gas/Synthetic methane	226	0.36
Hydrogen	1563	1.98

Transport cost

		Facility cost	Variable cost ^{*1}
		Electricity: \$/kW Other energy: US\$/(toe/yr) CO ₂ :US\$/(tCO ₂ /yr)	Energy: US\$/toe CO ₂ : US\$/tCO ₂
Elec	tricity ^{*2}	283.3+1066.7L	
lludranan	Pipeline*3	210.0L	5.0L
Hydrogen	Tanker	69.5L	7.26+0.60L
60	Pipeline*3	99.4L	2.35L
CO ₂	Tanker	47.5L	1.77L
Natural gas	Pipeline*2	128.3L	3.5L
(The same applies to synthetic methane.)	Tanker	35.1L	8.09+0.39L

L: Distance between regions (1000km)

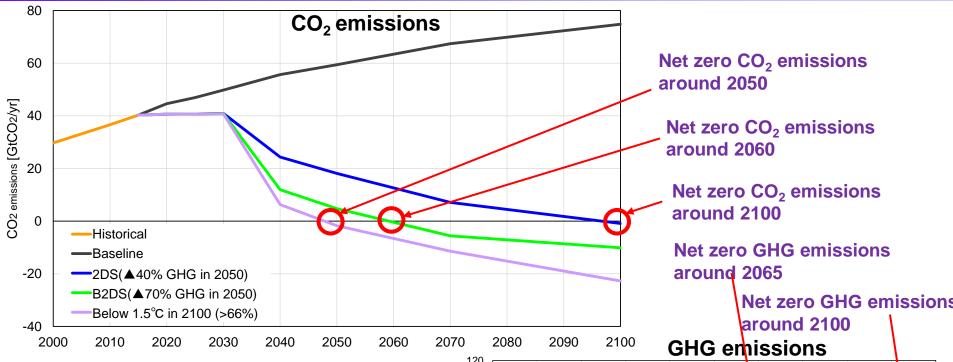
*1 For ships, the distance-independent term assumes fuel costs. For pipelines, the distance-dependent terms assume fuel costs and compression power costs, respectively.


*2 For submarine transmission lines, fixed costs are assumed to be 10 times higher than the above.

*3 For submarine pipelines, fixed costs are assumed to be three times higher than above.

Assumption for Shared Mobility Induced by Fully Autonomous Cars

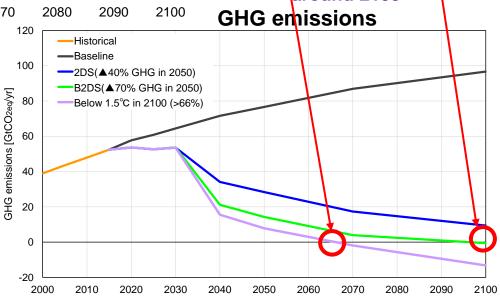
 In the case where demand decreases through car-sharing, <u>fully autonomous shared</u> <u>cars can be available after 2030</u>, and key parameters are assumed as below, mainly following Fulton et al. (2017).



- Opportunity costs of time required for driving and costs related to safety are considered.
- Impacts of the reduction in the number of cars induced by car- & ride-sharing are considered.

Following impacts driven by decrease in the number of cars are considered: 1. decrease in steel products and plastic products, 2. decrease in concrete and steel products due to the decrease in multi-storey car park space.

Global Baseline Emissions and Assumed Emissions Scenarios under 2°C and 1.5°C



Note) Emissions for baseline shows model estimates results under SSP2, not assumed scenario

※ 2DS, B2DS, B1.5OS scenarios assume emission constraints equivalent to NDCs of each nation up to 2030

In the scenario analyses of Japan's 2050 carbon neutrality, 1.5°C global scenarios are assumed in addition to Japan's emissions reduction scenarios, for the global competition for carbon neutral resources to be considered.

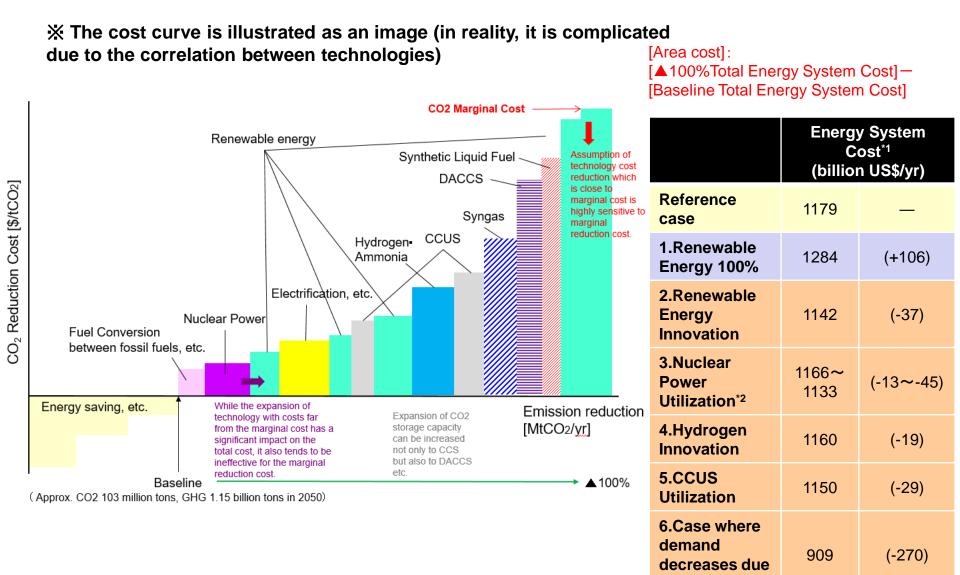
[ref.] Concept of Innovation in Power Supply Ref. Value

21

- Each power source must overcome a large hurdle to achieve the reference values for power sources in 2050 as
 presented at the Strategic Policy Committee.
- Under these conditions, for the 30 to 40% of nuclear power and fossil+CCUS, in case the upper limit of nuclear power is 10%, it is necessary to cover 20-30% with fossill+CCUS, thus it is assumed a considerable amount of CO2 is stored at home/abroad including CCUS required amount other than the electric power sector. For hydrogen/ ammonia and carbon recycled fuel, it is assumed that infrastructure development, etc. is expected to execute a large-scale transportation without setting the upper limit of supply on the model.
- It should be noted that in this analysis, the conditions were set by mechanically assuming such CCS storage amount based on the above reference values.
 2020/12/21 Strategic Policy Committee Material

In order to aim for carbon neutrality in 2050, stable power supply from decarbonized power sources is indispensable. From the perspective of 3E+S, multiple scenarios will be analyzed without limiting to the following. In deepening the discussion, the positioning of each power source is suggested as follows.

Established decarbonized power source	Renewable Energy		 Continue to aim for maximum introduction as the main power source in 2050. Immediately work on issues to promote the maximum introduction such as adjustment amount, transmission capacity, ensuring inertial force, responding to natural conditions and social constraints, maximizing cost control, and increasing social transformation to cost increases. How about deepening discussions on covering 50-60% (approx.) of the generated power (* 1) with renewable energy in 2050 as a reference value (* 2)?
Established of power power		ar power	 As an established decarbonized power source, aim for a certain scale of utilization on the premise of safety. In order to restore public trust, make an increased effort to improve safety, gain understanding and cooperation of the location area, solve back-end problems, secure business feasibility, maintain human resources and technical capabilities, etc. How about deepening discussion on covering 30-40% (approx.) with nuclear power which is a carbon-free power source other than renewable energy and hydrogen/ammonia, along with fossil+CCUS/carbon cycle in 2050 as a reference value (* 2)?
sources required innovation	power	Fossil + CCUS	 While having the advantages of supply capacity, adjustment power, and inertial force, decarbonization of fossil-fired power is the disadvantage. Aim to utilize on a certain scale immediately by developing technology and suitable sites, expanding applications and reducing cost, etc., toward the implementation of CCUS / carbon recycling. How about deepening discussion on covering 30-40% (approx.) together with nuclear power which is a carbon-free power source other than renewable energy and hydrogen/ammonia in 2050 as a reference value (* 2)?
Power sources req	Thermal po	Hydrogen, Ammonia	 While having the advantages of adjusting power and inertial force without emitting carbon during combustion, the challenges are establishing technology for large-scale power generation, reducing costs, and securing supply. Aim to build a stable supply chain immediately by promoting co-firing of gas-/coal-fired power, increasing supply and demand. Aim for a certain scale of utilization as a carbon-free power source, taking into account competition with industrial and transportation demand. Based on the fact that procurement required for future power generation is estimated to be 5-10-million ton as basic hydrogen strategy, how about deepening discussion on covering 10% (approx.) of generated power with hydrogen/ammonia in 2050 as a reference value (* 2)?


1: The amount of power generated in 2050 will be about 1.3-1.5 trillion kwh as a reference value (2) based on the power generation estimation by RITE presented at "the 33rd Strategic Policy Committee".

*2: This is not as a government goal, this is one guideline / option for future discussions. This will be the one of options to deliberate in considering multiple scenarios in the future.

[ref.] Marginal Abatement Cost & Total Energy System Cost

22

to car sharing

- *1: Numbers in parentheses are fluctuations from the reference
- *2: Nuclear utilization scenarios represent results from 20% and 50% nuclear ratios

CO2 Marginal Abatement Costs for carbon neutrality Rife in 2050: Japan and other countries 23

	Reference Case	2. Renewable Energy Innovation
Japan	525	469
US	167	138
UK	181	141
EU	211	169
Others	162	138

[US\$/tCO₂]