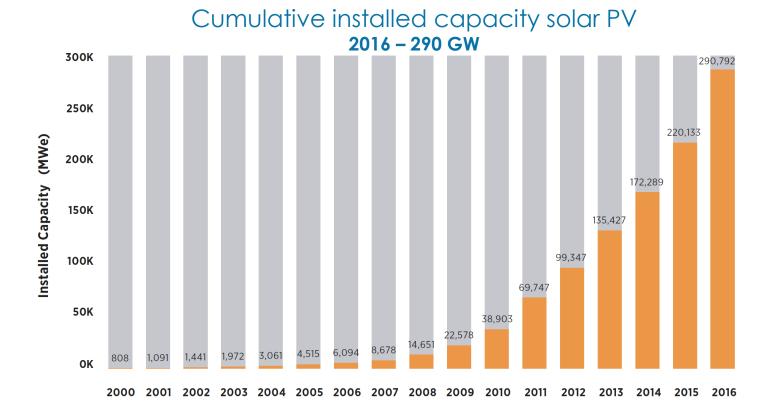
INTERNATIONAL RENEWABLE ENERGY AGENCY

Quality Infrastructure boosting PV Markets

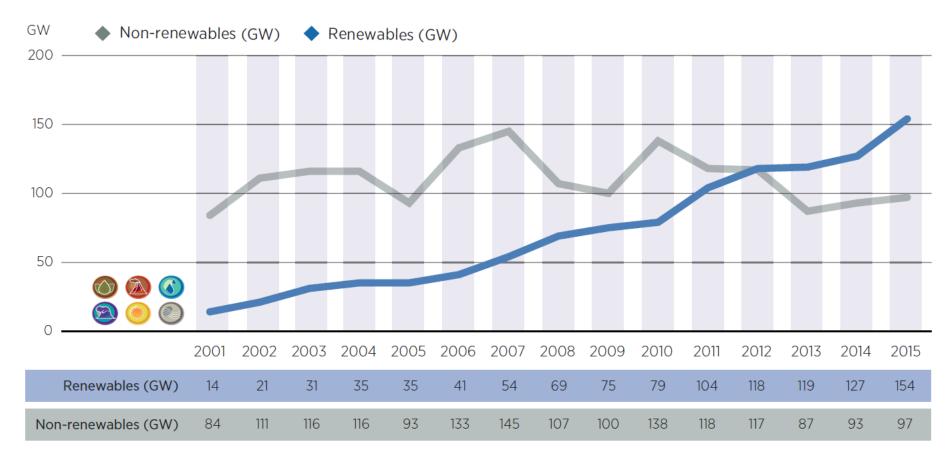
Forum on Regional Cooperation: Developing Quality Infrastructure for Photovoltaic Energy Generation

> Santiago de Chile 13-15 September 2017

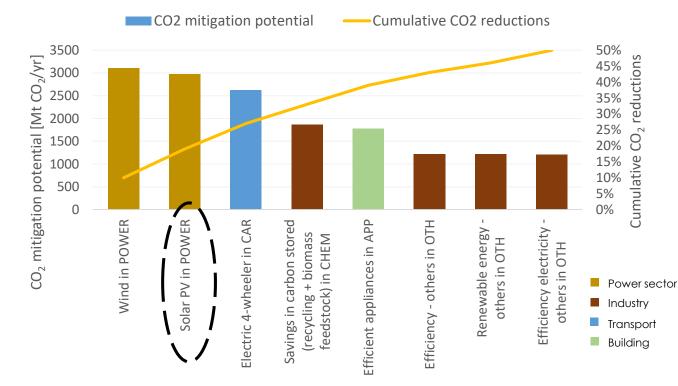


Global and regional context PV deployment

2016: A record year for renewables

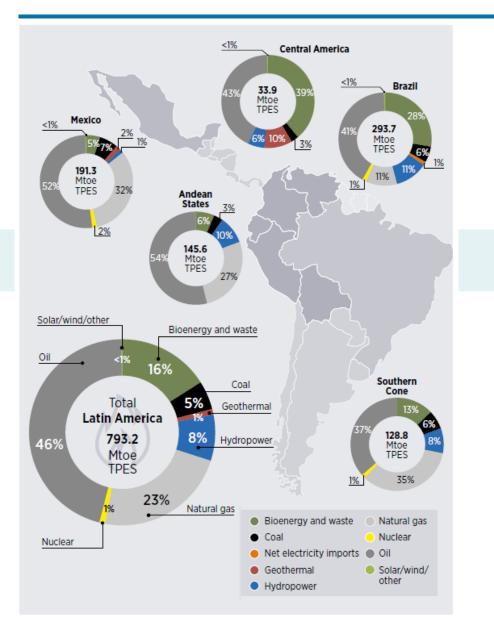

- 162 GW of RE installed 71 GW solar, 51 GW wind, 30 GW hydro, 9 GW bioenergy, 1 GW geothermal
- USD 360 billion in investments
- RE cumulative capacity > 2,000 GW
 - Despite low oil prices
- 164 countries with RE policies in place

Investments in renewable power have surpassed the ones in fossil fuels



RE represents 60% of the total new capacity investments in the last two years

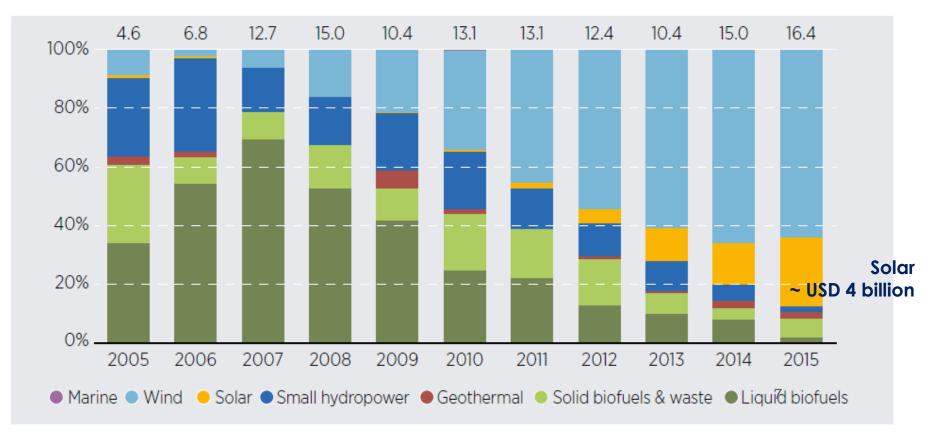
CO2 impact of technology solutions


What it means for innovation?

- Wind, solar PV and EVs are the key technologies for the decarbonisations: R&D to focus on system integration and continued cost reduction
- EE technologies are available but not implemented | would regulation help?
- RE in industry is significant but cost is too high | Breakthroughs and R&D urgently needed

Top 8 technologies represent half of the total emission reductions needed. Wind, solar PV, electric mobility for passenger cars, plastics recycling and efficient appliances represent more than 1/3

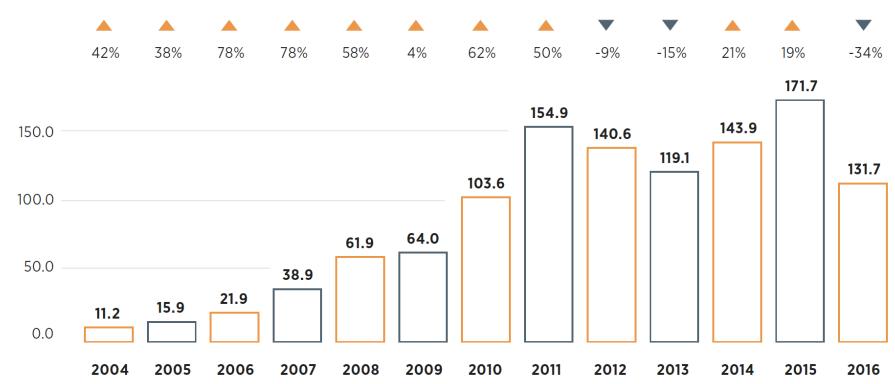
Latin America Energy Mix



Economy based on fossil fuels yet

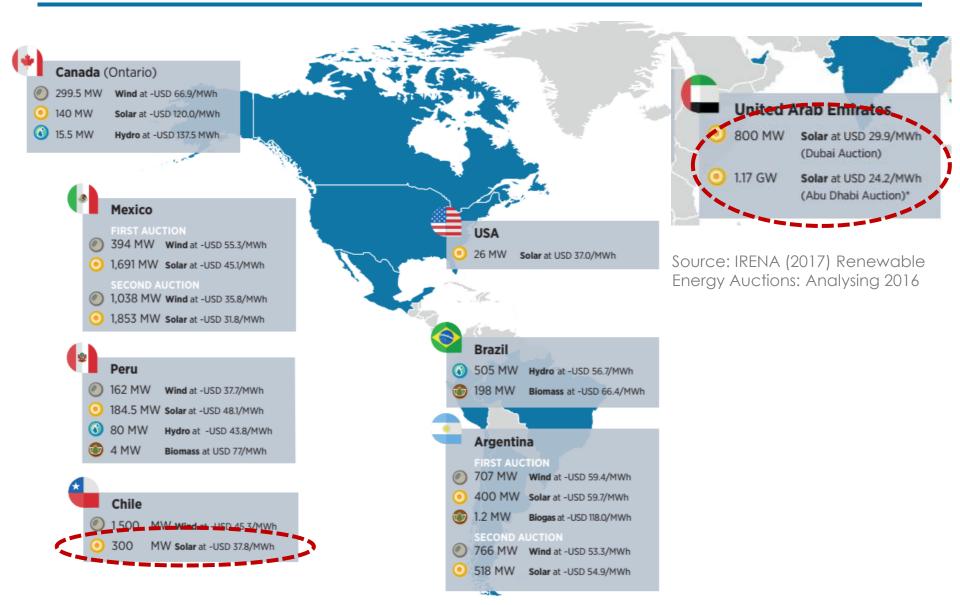
Source: IRENA (2016) Latin America RE Market Report

Wind and solar PV have surpassed bioenergy



Technical risk management

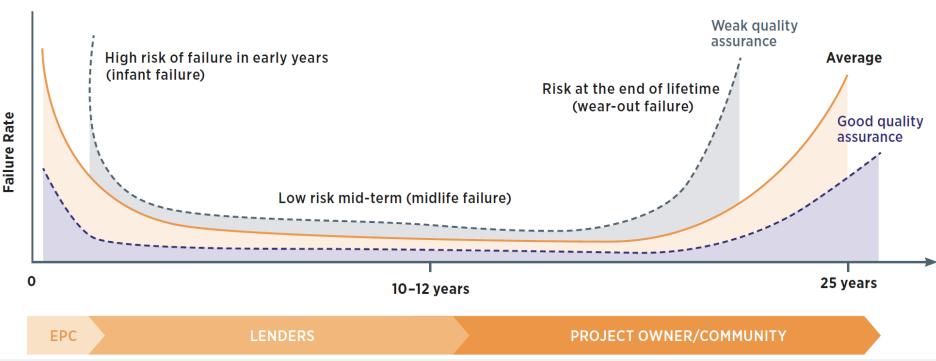
Global solar power investments


Source: Frankfurt School-UNEP Centre/BNEF. 2017.Global Trends in Renewable Energy Investment 2017, http://www.fs-unep-centre.org Note: Investment volume adjusts for re-invested equity. Total values include estimates for undisclosed deals.

2030: 2.7 trillion USD in 15 years | 186 billion USD/yr (1 800 GW)

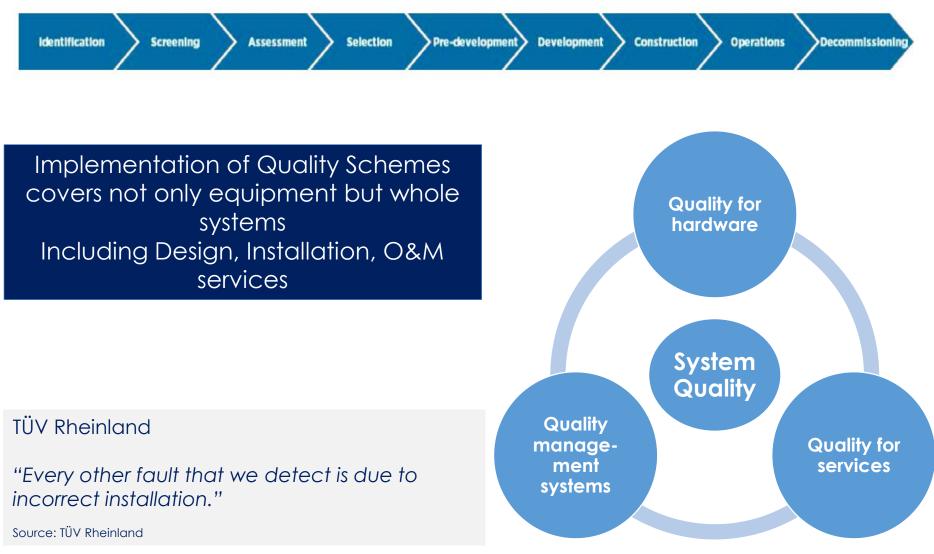
2016:131 USD billion

Record PV prices – what will be delivered?



Failure risks present in their majority at early and mature stages

Life expectation of modules is 25+ years, however they have to deal with failure PV curve

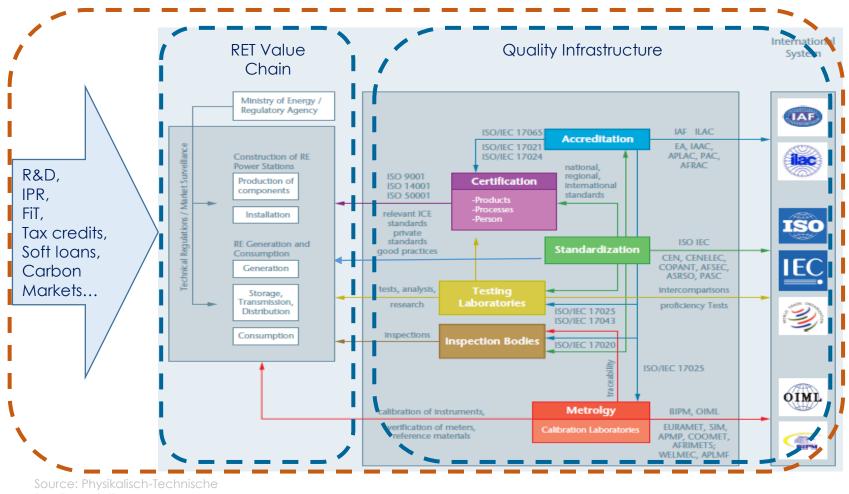


Lenders' perspective: revenues only important during first 10-15 years

- Risk of infant failures are passed to EPC
- Bankability assessments further minimize risks of midlife failure
 - Valid renown certifications
 - Track record of company and modules
 - ✓ Quality of manufacturing facility
 - Warranty conditions

Holistic View - Quality Covers the Whole System, not Hardware only

IRENA (2013) "International Standardisation in the Field of Renewable Energy"



Quality Infrastructure

Quality Infrastructure

Which **instruments** do we have to mitigate technical risk, attract investment and public acceptance, and meet expectations by all stakeholders in a USD trillion market?

International standards and conformity assessment schemes

Bundesanstalt

The benefits of QI services outweigh their costs

Quality infrastructure service	Cost	Benefit		
De	velopment: Solar resource and yield uncertai	inty		
Energy Production Assessment (EPA) based on measured irradiance data	Measuring local irradiance for at least one year	Reduction of uncertainty in EPA from 8% to 6% leads to an increase in P90 values by 3%. Rewarded through improved loan conditions.		
F	Preconstruction: Prevention of low plant yield	ls		
Batch acceptance testing for wholesale and utility projects	The cost of a batch acceptance test (Typically USD 50 000-55 350 for a 20 megawatt (MW) plant)	A reduction of the degradation rate from 0.75% a year to 0.4-0.6% a year in a project's financial model (Resulting in USD 450 000- 1 000 000 of increased revenue over 25 years for a 20 MW plant)		
	Construction: Performance testing			
Includes independent testing in engineering, procurement and construction contracts on photovoltaic systems performance	The cost of batch testing for a 20 MW plant is USD 276.75- 553.50/MW	Photovoltaic module manufacturers deliver modules exceeding contracted performance by 2-3% when batch testing is announced. (Earning an additional EUR 4 000-6 000/MW a year increased generation for a 20 MW plant) (USD 4 428-6 642/MW/year)		
Operation and maintenance				
Potential induced degradation (PID) reduction. Inspections to detect, classify and mitigate PID effects	Cost of inspection and corrective actions (for a 6 MW plant in Western Europe: EUR 2 5004 000/MW) (USD 2 767.5-4 428/MW)	Tackling PID reduces underperformance of 3–5%; however, recovery is not immediate (for the 6 MW plant, EUR 6 000–10 000/MW/year) (USD 6 642–11 070 MW/year)		

1 Policy Objectives	 Economic and affordable photovoltaic systems Support development goals Reliable photovoltaic systems PV integrated in power systems

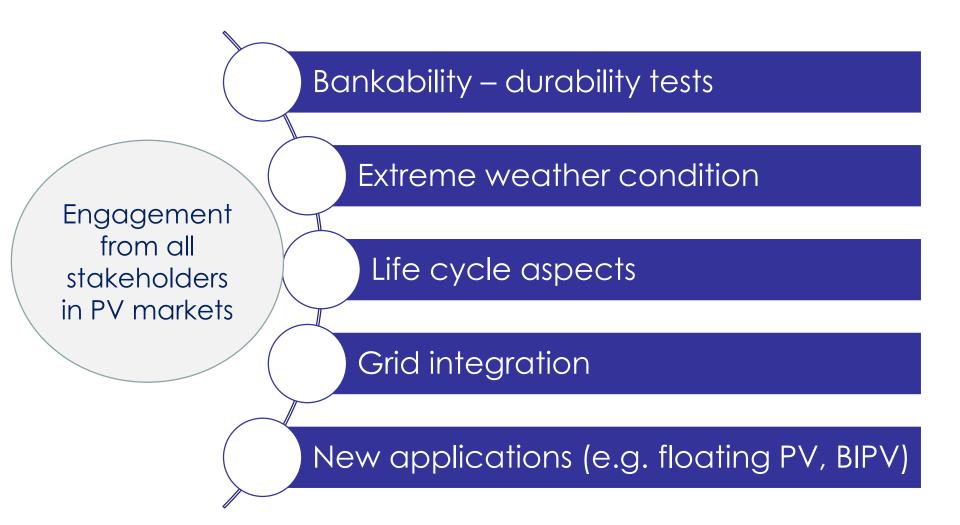
How quality infrastructure supports the policy objectives

Where to apply quality infrastructure

- Attracts investment through risk mitigation
- Increases public acceptance
- Encourages efficient services
- Fosters good practices
- Promotes consumer protection

- White papers
- Guidelines
- Regulations
- Incentives
- Industry guidebooks
- Vocational Training

IRENA uses a five-stage approach for the development of **QI**



International collaborations - some initiatives:

- IEC
- IEC RE
- PVQAT
- Regional
- Industry associations

What needs are coming next in QI for PV systems

IRENA Contribution

Supporting countries to develop and implement QI for RET

Download for free today: <u>www.irena.org/publications</u>

Requests

- China: Technical standards for Offshore Wind technology
- Japan: quality control for PV and Wind technologies in extreme weather conditions
- Latin American region: In cooperation with PTB, quality control for solar thermal and PV systems
- MENA region: In cooperation with EU GCC testing for PV systems
- **UAE:** International Standards for PV systems
- Mauritania: Request for support on grid connection codes
- Colombia: Grid codes
- Tanzania: Solar thermal

- International Electrotechnical Commission IEC: Workshops for Countries on use of standards, INSPIRE
- German Metrology Institute PTB: Quality infrastructure support, Workshop in Costa Rica, Green climate dialogue in Germany

- ENTSO-E, SolarPower Europe and Solar United:
 PV and grid codes
- IEA PVPS Task 13: Solar Bankability

WWEA: Standards in small wind technologies

 EU GCC Clean Energy Technology Nerwork : GCC Inception meeting & training-Solar Photovoltaic Testing Centres Network

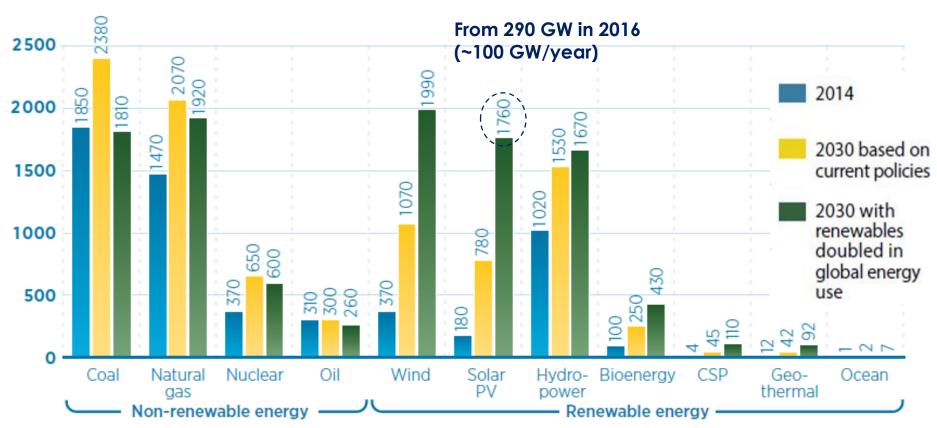
Final remarks

- We entered into an era of low equipment cost | quality infrastructure is critical to mitigate risks and achieve the expected LCOE
- Quality is not about hardware only, but a system approach is needed
- Progress on standards and conformity assessment schemes need to accelerate the pace to meet the existing and NEW markets needs
- Cost benefit ratio of assuring quality is positive
- International and regional cooperation networks strengthen and accelerate the development and implementation of QI for PV systems
- QI supports effectiveness of policies for PV markets all white papers should include the role of QI

Quality pays!

Please contact: Francisco Boshell (<u>Fboshell@irena.org</u>) Alessandra Salgado (<u>Asalgado@irena.org</u>) Florian Paffenholz (<u>FPaffenholz@irena.org</u>)

Backup slides for handouts

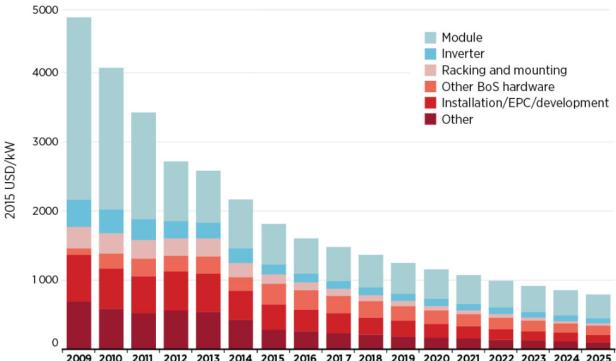

CO2 Mitigation potential and costs by sector

- Largest emission reduction potential exists in power and industry sectors
- Average abatement cost of technologies are highest in the building and industry sectors
- Options in the power sector are economically viable and for the transport sector nearly viable
- While power and transport may require continued improvement of available technologies, building and industry sectors may require breakthroughs

Power generation capacity (GW installed by 2030)

Source: IRENA Remap 2016

PV Modules represent around a third of PV installed costs

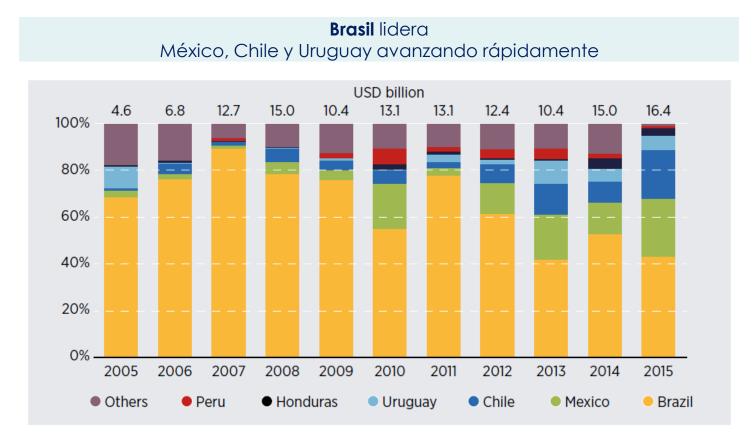

Equipment selection considering

Performance of PV modules is dependent to:

quality aspects

- Module technical characteristics
- Quality of materials used
- Testing procedures
- Quality of
 manufacturing facility
- Manufacturing process

Utility-scale solar PV: Global weighted average of total installed costs,



2009-2025

More than half of non schedule hardware repairs happen due to equipment selection

International Renewable Energy Agency

Source: IRENA (2016) Latin America RE Market Report

Standards for PV systems

System component manufacturing	System design and equipment selection	Installation and commissioning	Performance and operation & maintenance (O&M)	End-of-life
 Internationally IEC 61730, IEC 61215, IEC 62109 and IEC 62093 IEC 61215, IEC 61646, UL 1741 and IEC 62109 USA / UL 1703 China has developed its own standards 	 IEC 62548 (international) IEC 62738 for large (utility) scale project IEC 62257 for off- grid IEC 62116 for grid- code related regulations, which is typically country specific NEC Article 690 (USA), AS/NZS 4777,3100 (Australia) and GB 50797-2012 (China) Rollout of national standards for installations and certification of installers 	•IEC 62446 and 61724 (international)	 IEC 61724, 62446-2 (international) ASTM E2848 (USA) 	 Decommissioning and waste management options need yet to be properly addressed in international standards. Directives, like the European Waste Electrical and Electronic Equipment (WEEE) directive, are implemented awaiting transposition into national laws and standards.

International and National Standards

Country	PV Module	Inverter	Design and Installation	Commissio- ning	Performan- ce and Operations	Grid Code Related	Off Grid Specific	Utility Scale Specifi c
Interna- tional / IEC	IEC 61730, and IEC 61215 or IEC 61646 as applicable	IEC 62109- 1/2 IEC 62093 (Qualifica tion)	IEC 62548 (Primary) and IEC 60364 series	IEC 62446	IEC 61724 Future IEC 62446-2 (2017)	Country specific, but grid function testing per IEC 62116, IEC 62910	IEC 62257 Series for off grid and rural electrifica- tion	Future IEC 62738 (2016)
USA	UL 1703 UL 61215 / IEC 61646	UL 1741, UL 62109	National Electrical Code (NEC) Article 690	Not specified, multiple industry group recommen- ded practices	ASTM E2848, multiple industry recommen- ded practices	IEEE 1547 and regional/ state require- ments	N/A	Future NEC Article 691 (2017)
Australia	Same as IEC	AS/NZS 4777, AS/NZS 3100	AS/NZS 5033	Same as IEC	Same as IEC	AS/NZS 4777	AS 4509	
China	National standards & IEC		GB 50797- 2012	Same as IEC	Same as IEC			

A selection of typical PV module test lab equipment

Equipment	Test	Description
Ambient Temperature Measurement	IEC 61215 10.3 Insulation test; 10.5 Measurement of nominal operating cell temperature (NOCT); 10.9 Hot-spot endurance test UL1703 19 Temperature test	An ambient temperature sensor, with a time constant equal to or less than that of the module(s), installed in a shaded enclosure with good ventilation near the wind sensors.
Balance	IEC 61215 10.17 Hail test	A balance for determining the mass of an ice ball to an accuracy of ± 2 %.
Irradiance Meter	IEC 61215 10.8 Outdoor exposure test; 4.10 UV preconditioning test (IEC 61215-2:2016); 4.19.3 Hot-spot endurance test (IEC 61215-2:2016)	A device capable of measuring solar irradiation, with an uncertainty of less than ± 5 %.
Pyranometer	IEC 61215 10.5 Measurement of nominal operating cell temperature (NOCT) UL1703 19 Temperature test	A pyranometer, mounted in the plane of the module(s) and within 0,3 m of the test array.
Reference Cell for measuring the light source	IEC 61215 10.2 Maximum power determination; 10.4 Measurement of temperature coefficients; 10.6 Performance at STC and NOCT; 10.7 Performance at Iow irradiance UL1703 20 Voltage and current measurements test	A PV reference device having a known short-circuit current versus irradiance characteristic determined by calibrating against an absolute radiometer in accordance with IEC 60904-2 or IEC 60904-6.

A selection of typical PV module test lab equipment

Equipment	Test	Description
UV Light Sensor	IEC 61215 10.10 UV preconditioning test	Instrumentation capable of measuring the irradiation of UV light produced by the UV light source at the test plane of the module(s), within wavelength ranges of 280 - 320 nm and 320 - 385 nm with an uncertainly of ±15%.
Velocity Meter	IEC 61215 10.17 Hail test	An instrument for measuring the velocity of the ice ball to an accuracy of $\pm 2\%$. The velocity sensor shall be no more than 1 m from the surface of the test module.
Continuity Tester	IEC 61215 10.12 Humidity-freeze test; 10.16 Mechanical load test UL1703 41 Mechanical loading test	Instrumentation to monitor the electrical continuity of the module during the test.
Resistance Measurement	IEC 61215 10.15 Wet leakage current test UL1703 27 Wet insulation- resistance test	Instrument to measure insulation resistance.
Steady-state light source	IEC 61215 10.9 Hot-spot endurance test	Radiant source 1: Steady-state solar simulator or natural sunlight capable of an irradiance of not less than 700 W·m–2 with a non-uniformity of not more than ± 2 % and a temporal stability within ± 5 %; or: Radiant source 2: Class C steady-state solar simulator (or better) or natural sunlight with an irradiance of 1 000 W·m–2 \pm 10 %.

Methods and equipment necessary for PV system and component testing

Test	Equipment	Description			
General	eneral				
Qualification test to IEC 62093	Environmental chambers	Enclosures for controlled testing of temperature, humidity			
	Vibration table	Simulator with control of vibration amplitude, frequency, acceleration			
	UV chamber	Enclosure for exposing equipment to controlled UV light			
	Power supplies	Devices for controlling voltage and current input or output to electrical components			
Inverters					
Safety tests to IEC 62109-1	PV simulator	Power supply capable of simulating current-voltage characteristics of a PV array			
and IEC 62109-2 &	Grid and load simulator	AC grid connection or simulated grid supply, and load simulators for off-grid tests			
UL 1741 (U.S.)	Residual current test circuits	Resistive/capacitive circuits for validating detection of residual currents			
	Environmental chambers	Enclosures for controlled testing of temperature, humidity			
	Sound and sonic pressure meter	Device for measuring sound intensity (volume) and sonic pressure			
	UV chamber	Enclosure for exposing equipment to controlled UV light			
	Access probe	Device for determining physical access to live parts			
Anti-islanding tests to IEC	PV simulator	Power supply capable of simulating current-voltage characteristics of a PV array			
62116 and IEEE 1547 (US)	Grid and load simulator	AC grid connection or simulated grid supply, and load banks to simulate electrical island			
Low-Voltage Ride-Through	PV simulator	Power supply capable of simulating current-voltage characteristics of a PV array			
tests to IEC 62910	Grid simulator	AC grid simulator capable of simulating full range of single and three phase voltage (collapse) with programmed durations.			
	PV simulator/DC supply	Power supply capable of simulating current-voltage characteristics of a PV array			
Efficiency tests to IEC 61683	AC Grid connection or simulator	AC grid connection or simulated grid supply			
and IEC 62894	Complex load banks	Controlled resistive and reactive loads, non-linear loads			
	Transducers	High accuracy voltage and current measurement devices, DC and AC			

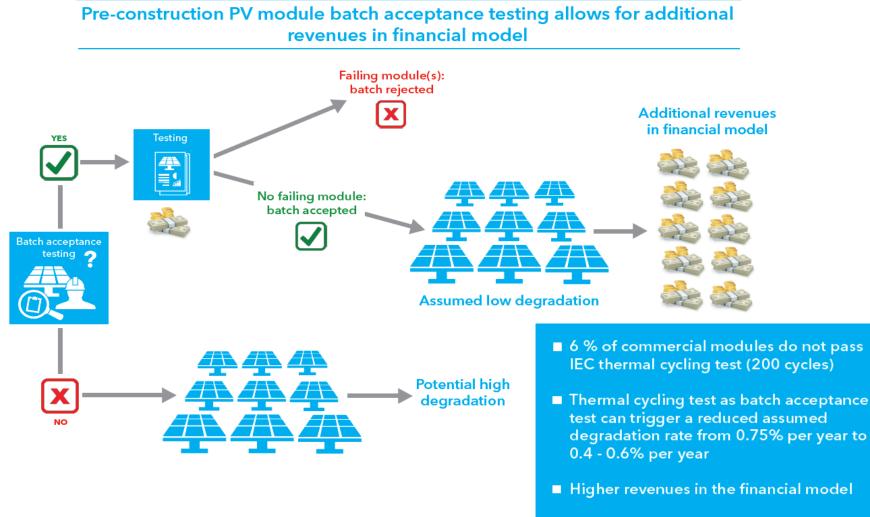
Methods and equipment necessary for PV system and component testing

Test	Equipment	Description
PV charge controller		
	Environmental chambers	Environmental chamber is required for nearly every test in 62509 so that operational tests can be performed with the charge controller in controlled steady state temperatures.
Performance to IEC 62509	PV simulator/DC supply	Power supply capable of simulating current-voltage characteristics of a PV array is preferred. A controlled dc source (voltage and current) in combination with a series resistor is an acceptable alternative.
	Battery simulator/DC supply	Power supply with independent voltage and current control.
	Resistive load bank	Variable resistive load to provide controlled loads to the simulated battery and charge controller.
Combiner Boxes		
Safety and design verification	Environmental chamber	Enclosures for controlled testing of temperature, humidity.
to UL 1741 and	DC power supplies and DC voltage hi-pot tester	Controlled dc voltage and current supply for steady state testing as well as dc high pot voltage tests for validating insulating properties of components.
IEC 61439-2	DC power supply with high current capability	Supply for performing short-circuit current withstand capability tests on power components (busbars, switches, etc.)
	Radiant heat lamps	Radiant lamps are used to simulate the effects of solar radiation on various sides of the enclosure during the assembly heat-rise tests. [This test is new and will be included in the next edition of the standard.]
	Salt-mister	Salt-mist spray device used for corrosion testing of metallic parts and assemblies
	Miscellaneous environmental related test	Test equipment used for mechanical impact tests (e.g. controlled hammer), controlled water and particulate sources for water and solid body ingress tests
	equipment	(IP ratings), etc.
	EMC test equipment	Appendix C
	Transducers	High accuracy voltage and current measurement devices, DC and AC

Methods and equipment necessary for PV system and component testing

Test	Equipment	Description
PV disconnect switches	-	
Safety to IEC 60947-3 or	Environmental chamber	Enclosures for controlled testing of temperature, humidity.
UL 98B	DC power supplies and DC voltage hi-pot tester	Controlled dc voltage and current supply for steady state testing as well as dc high pot voltage tests for validating insulating properties of components.
	Miscellaneous endurance related test equipment	Test equipment used for mechanical operations of switch (on/off), contact opening, mold stress relief, IP ratings, etc.
PV Connectors		
Safety to IEC 62852 and	Access probe for shock protection test	IEC test finger in accordance with IEC 60529.
UL 6703	Corrosion test equipment	Flowing mixed gas corrosion according to test 11g of IEC 60512. Sulphur dioxide test with general condensation of moisture according to ISO 6988.
	Environmental chamber	Enclosures for controlled testing of temperature, humidity.
	Miscellaneous environmental related test	Test equipment used for mechanical stresses (e.g. forced insertion and withdrawal, swing load tests) controlled water and particulate sources for water and
	equipment	solid body ingress tests (IP ratings), etc.
	DC power supplies and DC voltage hi-pot tester	Controlled dc voltage and current supply for steady state testing as well as dc high pot voltage tests for validating insulating properties of components.

Business models for new test laboratories



- New commercial test laboratories and PV test activities are being deployed:
 - Incrementally by building on existing business activities, like those from national universities, test institutes and engineering consultancies
 - Addressing solar quality issues that are apparent in the downstream part of the PV supply chain (PV system level) and that require lower upfront investments.
 - Building upon existing business activities and/or focusing on the downstream part of the PV supply chain are key elements for viable business models applied by new test laboratories surviving the competitive PV market

The benefits of QI services outweigh their costs – acceptance testing

Example: batch acceptance testing

Cost-benefit rate about 1:10

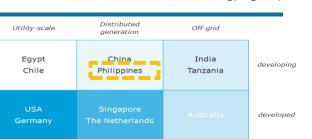
Different country context to develop a QI

Countries from Developed and Developing Countries **3** PV Systems: off-grid applications, distributed generation, and utility scale

	Utility- scale	Distributed Generation	Off-grid
Developing	Egypt Chile	China Philippines	India Tanzania
Developed	USA Germany	Singapore The Netherlands	Australia

STRATEGY TO DEVELOP AND IMPLEMENT QI - PHILIPPINES

Context


- 2014- first E-guidebooks for both utility and rooftop PV (IEC standards for the procurement and construction of PV
- Standardised administrative framework for FiT qualification

Challenges

- 1. **Regulatory barriers -** rooftop PV developers often cite the existing legal and administrative processes to be complex
- 2. Enhance the attractiveness of **incentive schemes**
- 3. Control sale of **sub-standard** PV equipment

Building on QI

- Formalisation of "licensed" training courses for installation
- o Adoption net metering schemes to improve QI attractiveness
- Guidelines for **testing and certification** of PV panels

STRATEGY TO DEVELOP AND IMPLEMENT QI -TANZANIA

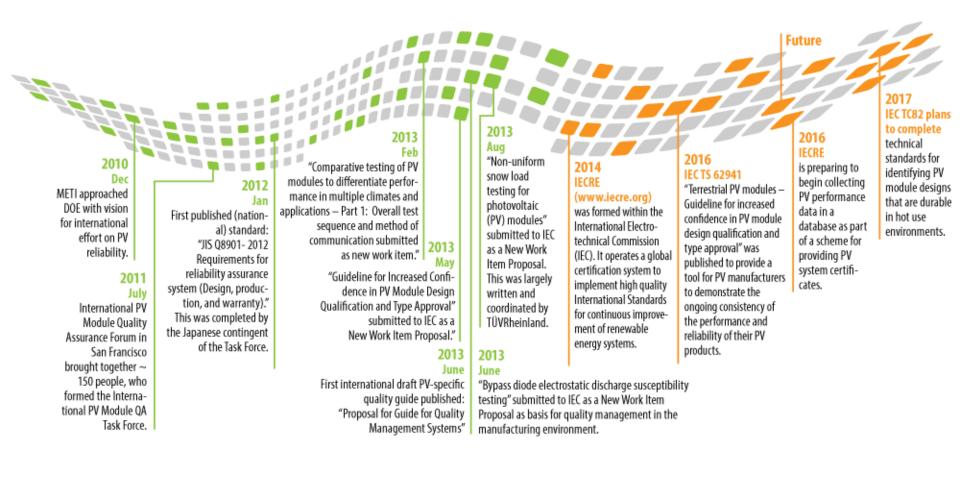
Context

Tanzania Bureau of Standards (TBS)adopted :

- IEC PV system related standards
- Verification of Conformity of imported products
- Certificates of Conformity
- **Market surveillance.** Product fails=the importer must pay all costs relative to the removal of the products from the market.


Challenges

- 1. Parallel **counterfeit market** of substandard products developed
- 2. Lack of coordination of intergovernmental institutions



- Encourage fair competition in the market
- **Collaboration** between different institutions on control of imports
- Train importers on **technology and product registration**
- o Inform **end user** on importance of selecting registered product

International PV Quality Assurance Task Force

S IRENA

International Renewable Energy Agency

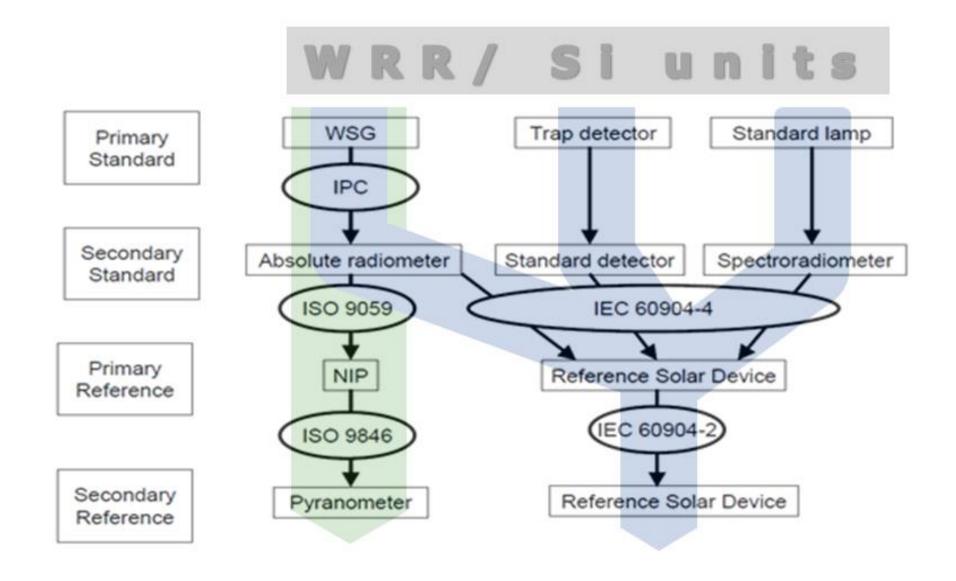
INSPIRE Platform - Search of International Standards

Access for free: www.irena.org/inspire

Webinar about INSPIRE: https://www.youtube.com/watch?v =O2AOwZH5sxM INSPIRE facilitates in a simple way a catalog of the applicable standards for Solar Technologies

Cross-cutting

IECRE Conformity Assessment


System

Source: IECRE (2016) IEC CONFORMITY ASSESSMENT BOARD, CAB Oversees IEC Conformity Assessment policy and Systems, eg IECEE, IECEx, IECQ, IECRE IECRE Management Committee, REMC Overall management of the IECRE System IECRE Secretariat **National Members (Countries) Technical Support** Officers + Executive, Scheme Chairs, IEC Gen. Sec Administration Expert Working Groups (WGs) – as needed ME OMC WE OMC **PV OMC** Wind Energy Marine Energy **PV Solar Operational** Operational Operational Management Management Committee Management Committee Committee National Members National Members **National Members** TC 88 + SC Liaison TC 114 + SC Liaison TC 82 + SC Liaison Committees + WGs Committees + WGs Committees +WGs

Traceability chain for solar reference cells (blue) and pyranometer (green)

Contributions of the overall uncertainty of the energy yield

Effect	Overall uncertainty range
Insolation variability	• ± 4-7%
 POA (plane of array) transposition model 	• ± 2-5%
Temperature coefficients and temperature effects	± 0,02%/°C (5% relative error for crystalline silicon based modules)
Temperature deviation due to environmental conditions	1-2 °C (± 0.5-1%) Up to ±2% if environmental conditions are not included
Inverter model	• $\pm 0.2\%$ to $\pm 0.5\%$ for the inverter model
PV array model	• ±1% to ±3% for the PV array model
Degradation	± 0.25-2%
Shading	Site dependent
Soiling	± 2% (also site dependent)
Spectral Mismatch (modelled)	• ± 0.01% - 9% (depending on PV technologies)
	 ± 1% to ±1.5% for c-Si
Nominal power	± 1-2%
Overall uncertainty	± 5-10%
Source: (EURAC/TÜV-RH, 2016)	

Summary of policies, regulations and codes for distributed PV installations

Public policy instru	uments that refer to		Distributed				
QI elements		China	Singapore	Philippines	Netherlands		
Conformance	Guidelines and guidebooks		\checkmark	\checkmark			
comonnance	Development of national standards	\checkmark	\checkmark				
	Adoption of standards (PV components)	\checkmark	\checkmark				
	Adoption of standards (Installation)		\checkmark				
Compliance	Testing of PV modules and components	\checkmark					
	Formal training requirements, installer certification				\checkmark		
	Certification of grid code compliance	\checkmark	\checkmark	\checkmark	\checkmark		
	Penalties for non- compliance	\checkmark	\checkmark		\checkmark		

Summary of policies, regulations and codes that refer to QI for utility PV installations

Public policy instru	ments that refer to	Utility			
QI elements		USA	Egypt	Chile	Germany
Conformance	Guidelines and guidebooks	\checkmark			\checkmark
	Development of national standards	\checkmark		\checkmark	\checkmark
	Adoption of standards (PV components)	\checkmark			
	Adoption of standards (Installation)				
Compliance	Testing of PV modules and components	\checkmark			
•	Formal training requirements, installer certification	\checkmark			
	Certification of grid code compliance	\checkmark	√	\checkmark	\checkmark
	Penalties for non- compliance	\checkmark			

Summary of policies, regulations and codes that refer to off-grid PV installations

Public policy instru	ments that refer to QI		Off-grid	
elements		Australia	India	Tanzania
Conformance	Guidelines and guidebooks	\checkmark	\checkmark	\checkmark
	Development of national standards	\checkmark		
	Adoption of standards (PV components)	\checkmark	\checkmark	\checkmark
	Adoption of standards (Installation)	\checkmark		
	Testing of PV modules and components	\checkmark		\checkmark
Compliance	Formal training requirements, installer certification	\checkmark		
	Certification of grid code compliance	NA	NA	NA
	Penalties for non- compliance	\checkmark	\checkmark	\checkmark

The QI

Payback

Quality is a key aspect to mitigate environmental impact

High failure rates lead to a significant amount of waste

In Germany:

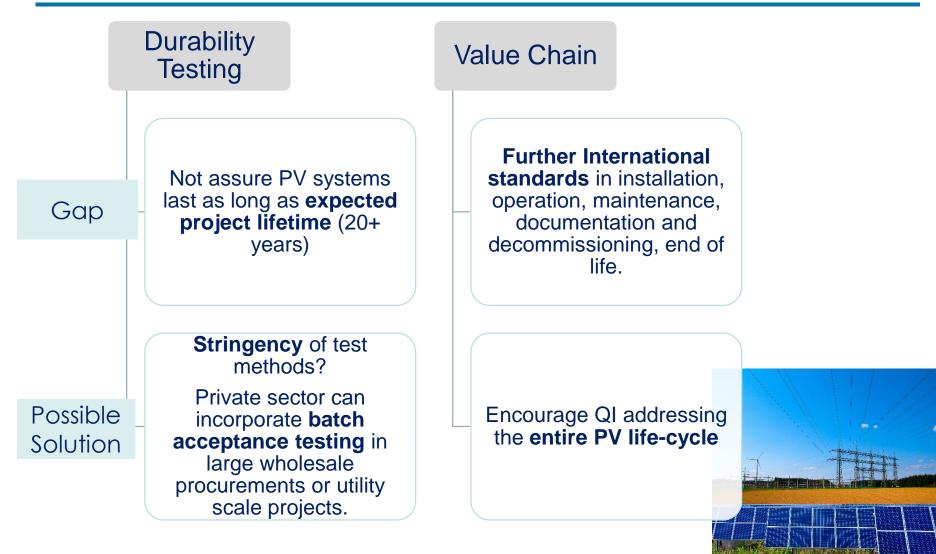
1 MW represents approximately 100 tons of waste Current installed capacity is 40 GW = 4 million tons

With ca. 1% failure = 40K tons of additional waste to be disposed

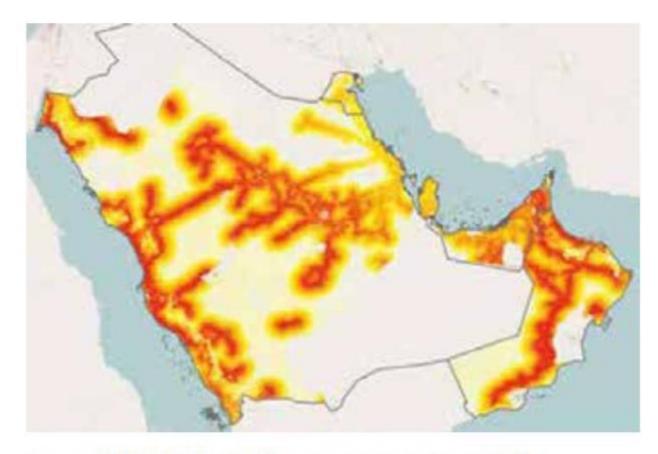
Positive Energy Balance

Higher revenues

Consumers protection

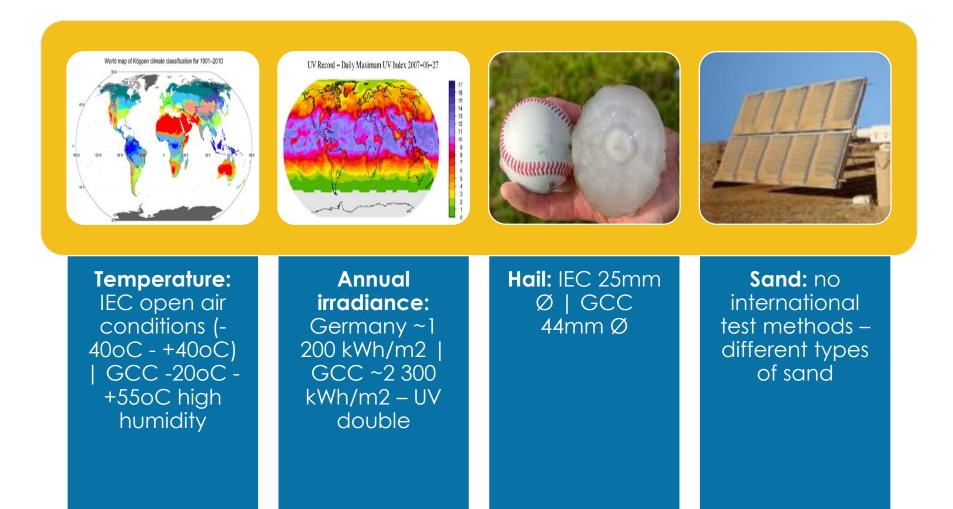

Mitigate Carbon Footprint

Work-in-progress at international level

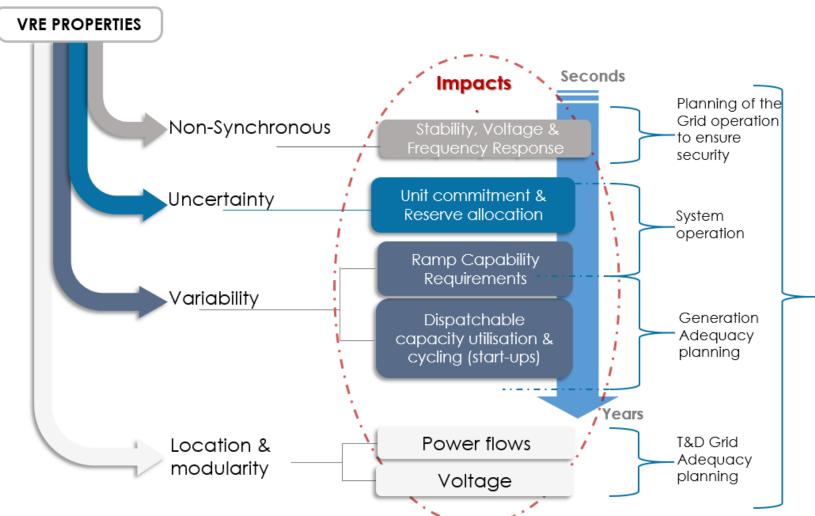


Extreme weather conditions: Example – GCC region

~60% of the GCC's surface area has excellent resources for solar PV Just 1% of this area represents ~470 GW of additional capacity


Source: IRENA (2016) RENEWABLE ENERGY MARKET ANALYSIS: THE GCC REGION

Source: (IRENA, 2016) (http://irena.masdar.ac.ae/?map=2146)


GCC's local conditions

Standards for grid integration – Grid codes

IMPACTS DEPEND ON SYSTEM CHARACTERISTICS

New applications

Table 2 - Mounting categories A - E

Photovoltaics in buildings

Part 2: BIPV systems

Floating PV

\wedge	Sloped, roof-integrated, not accessible from within the building	Category A:
	The PV modules are mounted in the building envelope at an angle between 0° and 75° (see Fig. 1) with a barrier underneath preventing large pieces of glass falling onto accessible areas below	
\wedge	Sloped, roof-integrated, accessible from within the building	Category B:
\Box	The PV modules are mounted in the building envelope at an angle between 0° and 75° (see Fig. 1)	
\wedge	Non-sloped (vertically) mounted not accessible from within the building	Category C:
	The PV modules are mounted in the building envelope at an angle of between and including both 75° and 90° (see Fig. 1) with a barrier behind preventing large pieces of glass or persons failing to an adjacent lower area inside the building.	
\sim	Non-sloped (vertically) mounted accessible from within the building	Category D:
\square	The PV modules are mounted in the building envelope at an angle of between and including both 75° and 90° (see Fig. 1)	
\wedge	Externally integrated, accessible or not accessible from within the building	Category E:
ŀ	The PV modules are mounted onto the building and form an additional functional layer (as defined in 3.1) exterior to its envelope (e.g. baiconies, ballistrades, builters, awnings, louvres, brias poliel etc.).	

Sources: BSI Group | http://www.japanbullet.com/technology/west-holdings-to-build-japan-s-largest-floating-solar-power-plant