
Methodology

IRENA 2020

1. Major assumptions

2. Building blocks

3. Investment run

4. Costs

5. More information

Contents

Presenter
Presentation Notes
To use hyperlinks:
Right click link
Left click ‘Open Hyperlink

Major Assumptions

1. Perfect foresight

2. Linear model

3. Formulated with MathProg, solved with an open solver

4. Cost minimising

Contents

Back to contents

Presenter
Presentation Notes
To use hyperlinks:
Right click link
Left click ‘Open Hyperlink

Perfect vs. uncertain forecast

◦ FlexTool has no uncertainty – it knows what will happen and solves a perfect dispatch
◦ In reality:

 uncertainty forces transmission system operators to commit more resources than needed
 uncertainty means, e.g., charging and discharging of energy storages cannot be fully optimal

◦ FlexTool commits
◦ resources sufficient for perfect dispatch
◦ single upward reserve that can cover variability within model time step as well as contingencies

◦ Reserves that are used to mitigate forecast errors (longer than model time step) can
be used during dispatch – FlexTool should not keep those reserved, because then they
could not be used

◦ Consequences:
 Value of storages can be higher than can be really achieved
 Slightly smaller costs, since the model can manage with less online units

Linear vs. mixed integer modelling

◦ IRENA FlexTool does not use integer decision variables (e.g., on/off)
◦ Instead, startups have been linearised (unit can start also partially)

◦ It matters when:
◦ Running operational optimisation for actual system operation
◦ Comparing technologies that have distinct start-up characteristics (e.g., gas turbine vs. gas engine)
◦ Small systems with only few units
◦ Large individual units in comparison to system size
◦ System stability requires some units to be online (can be endogenously forced in FlexTool)

◦ It matters a little in:
◦ High level long-term planning
◦ Systems with flexible generation portfolios

Solving the problem

◦ FlexTool uses GNU MathProg language to formulate the optimisation problem to a separate
solver

◦ Solver minimises (or maximises) a system of linear equations
◦ flexModel.mod is a MathProg file and contains the equations

◦ For linear problems, open source solvers perform quite well
◦ Especially Clp (Coin-or linear programming) used by FlexTool

◦ In mixed-integer problems commercial solvers are orders of magnitude better than open source
solvers

◦ Efficient solution algorithms are based on primal simplex, dual simplex, and interior point
methods

◦ Genetic algorithms, AI, particle swarm, annealing, etc. methods also exist, but are much slower
◦ Linear problems are typically solved to global optimum (integer problems are typically not –

defined by solution gap)

Cost minimisation

+ fixed operation and maintenance costs [capacity×unittype: fixed_cost]
+ variable operation and maintenance costs [v_gen | v_charge | v_convert×unittype: O&M_cost]
+ fuel costs of units [v_fuelUse×fuel: fuel_price]
+ CO2 emission costs [v_fuelUse×fuel: CO2_content×master: CO2_cost]
+ start-up costs [v_startup×unittype: startup_cost]
+ penalty cost for loss of load [v_slack×master: loss_of_load_penalty]
+ penalty cost for insufficient upward reserves [v_reserveSlack×master: loss_of_reserves_penalty]
+ penalty cost for insufficient capacity margin [v_capacitySlack×master: lack_of_capacity_penalty]
+ penalty cost for curtailment of VRE [v_curtail×master: curtailment_penalty]
+ penalty cost for insufficient inertia [v_inertiaSlack×master: lack_of_inertia_penalty]
+ unit investment costs [v_invest×unit_type: inv.cost_kW×annuity]
+ storage investment costs [v_investStorage×unit_type: inv.cost_kWh×annuity
+ transmission line investment costs [v_investTransfer×nodeNode: inv.cost_kW×annuity]

Operation

Penalties

Investment

Capacity
=
+ pre-existing capacity [units: capacity]
+ forced new capacity [units: invested_capacity]
+ invested new capacity [v_invest | v_investTransfer]

Objective function

Building Blocks

1. Grid

2. Node
◦ Demand
◦ Reserve requirements
◦ Non-synchronous limit
◦ Inertia limit
◦ Transfer between nodes

Contents

3. Unit
◦ Defining unit category
◦ Upward limit
◦ Online variable
◦ Ramp constraint
◦ Advanced features

4. Timestep

Back to contents

Presenter
Presentation Notes
To use hyperlinks:
Right click link
Left click ‘Open Hyperlink’

gridNodes

◦ Grids, nodes, and nodeGroups are defined in
◦ nodeGroup and
◦ gridNode sheets

gridNode sheet
nodeGroup sheet

One of the basic building blocks, 1/2

◦ Grids are used to label different grids (e.g., electricity and natural gas)
◦ No equations or constraints related only to grid
◦ Used when presenting results

◦ Combination of gridNodes used in defining the model

One of the basic building blocks, 2/2

◦ Grids and nodes are used to model characteristics of geographical areas,
◦ Demand,
◦ Reserve requirements,
◦ Non-synchronous limit
◦ Inertia limit

◦ One node can be part of only one grid
◦ They can cover the same geographical area, but need different names

◦ Nodes can be modelled individually or as a group of nodes

◦ Transfers between nodes allows sharing generation and reserves

Demand of each node

◦ Net demand in each node is a sum of
demand and import
◦ Annual sums are defined in gridNode sheet
◦ Hourly values are calculated based on

normalised time series

gridNode sheet ts_energy sheet ts_import sheet

Normalised demand of one hour:
Demand (t0001) =
ts_energy(t0001) / sum_t(ts_energy)
* annual demand

Energy balance equation

+ generation from non-VRE units [v_gen]
+ generation from VRE units [ts_cf: time series]×capacity

- curtailment of VRE units [v_curtail]
+ imports* [v_transfer and/or ts_import: time series]
+ energy conversions to the node* [v_convert]
+ discharging of storages* [v_gen]
+ loss of load [v_slack]
=
+ energy demand [v_charge and/or ts_demand: time series]
+ exports* [v_transfer and/or ts_import: time series]
+ energy conversions from the node [v_convert]
+ charging of storages [v_charge]

* can contain losses

Inputs Outputs

=

Reserve requirements: Static reserves

◦ Static reserves are predefined time
series that need to be activated
◦ For single node or node group

◦ If static reserves are activated, every
node and node_group requires own
matching time series

◦ Dynamic reserves are calculated
based on generating units (see next
slide), but these need also to be
activated

nodeGroup sheet + ts_reserve_nodeGroup

gridNode sheet + ts_reserve_node

Reserve requirements: Dynamic reserves

◦ Dynamic reserve can be defined for
units
◦ Reserve increase ratio in unit sheet
◦ By default used with VRE generation
◦ When unit generates, it increases the

reserve need
◦ E.g., 10 MW of wind power is defined to

need 1 MW reserves

◦ Dynamic reserve is not additional to
static, model checks every hour
(stricter requirements)

unit sheet

Upward reserve requirement: single nodes

Single node reserve requirement:
+ sum of reserves from the units in the node sum (units: [v_reserve(node, unit, t)]
+ reserve from VRE units [v_reserveVRE(node, t)
+ lack of reserve penalty variable [v_reserveSlack(node, t)
>=
+ reserve requirement for the node

Static
- [gridNode: use ts_reserve]
- [ts_reserve_node: time series]

Dynamic:
- [gridNode: use dynamic reserve]
- Sum (units: [v_gen(node, unit, t)]× [units: reserve_increase_ratio]

Upward reserve requirement: groups of nodes

Node A

Node B

Node C

NodeGroup reserve requirement:
+ sum of reserves from the units in the nodes sum (units: [v_reserve(node, unit, t)]
+ reserve from VRE units [v_reserveVRE(node, t)
+ lack of reserve penalty variable [v_reserveSlack(node, t)
>=
+ reserve requirement for the node

NodeGroup ‘reserveNodes’
=
Union (Node A, Node B, Node C)

Static
- [nodeGroup: use ts_reserve]
- [ts_reserve_nodeGroup: time series]

Dynamic:
- [nodeGroup: use dynamic reserve]
- Sum (units: [v_gen(node, unit, t)]× [units: reserve_increase_ratio]

Further reserve limits

VRE upward reserve:
+ reserve from VRE [v_reserveVRE]
<=
+ VRE curtailment [v_curtail]

×reserve contribution [unit_type: max_reserve (0-1)]

Storage content reserve limit:
+ reserve from storage unit [v_reserve]
<=
+ charged energy [v_state]

/ duration of the reserve [master: reserve_duration]

Maximum non-synchronous share, 1/2

◦ Maximum non-synchronous shares activated in master sheet
◦ Defined for single node or node group
◦ Units are flagged synchronous (0) or non-synchronous (1) in

unitType sheet
nodeGroup sheet

gridNode sheet
unitType sheet

master sheet

parameter value
co2_cost 10
loss_of_load_penalty 10000
loss_of_reserves_penalty 20000
lack_of_inertia_penalty 30000
curtailment_penalty 20
lack_of_capacity_penalty 5000
time_in_years 1.000
time_period_duration 60
reserve_duration 0.50
use_capacity_margin 1
use_online 1
use_ramps 0
use_non_synchronous 1
use_inertia_limit 0
mode_invest 0
mode_dispatch 1
print_duration 0
print_durationRamp 0
print_unit_results 0

+ non-synchronous generation [v_gen]
+ non-synchronous VRE generation [ts_cf: time series]×capacity

- curtailment of VRE units [v_curtail]
+ non-synchronous conversion [v_convert]
+ HVDC transfer into the node [v_transfer]
+ discharging of non-synch. storages [v_gen]
<=
maximum non synchronous share [nodeGroup: non synchronous share]
×(

+ energy demand [v_charge and/or ts_demand: time series]
+ exports - imports [v_transfer and/or ts_import: time series]
+ energy conversions from the node [v_convert]
+ charging of storages [v_charge]
- loss of load [v_slack]

)

Can be applied to
- group of nodes [nodeGroup]
- individual nodes [gridNode]

Maximum non-synchronous share, 2/2

Minimum inertia limit, 1/2

◦ Minimum inertia limit needs to be activated from master sheet in
input data (use_inertia_limit = 1)

◦ Defined only for node groups
◦ Inertia constant for each unit defined in unitType (MWs/MW)

nodeGroup sheet

master sheet
unitType sheet

parameter value
co2_cost 10
loss_of_load_penalty 10000
loss_of_reserves_penalty 20000
lack_of_inertia_penalty 30000
curtailment_penalty 20
lack_of_capacity_penalty 5000
time_in_years 1.000
time_period_duration 60
reserve_duration 0.50
use_capacity_margin 1
use_online 1
use_ramps 0
use_non_synchronous 1
use_inertia_limit 0
mode_invest 0
mode_dispatch 1
print_duration 0
print_durationRamp 0
print_unit_results 0

Minimum inertia limit, 2/2

+ online capacity of conventional online units [v_online]
×inertia constant [unit_type: inertia constant]

+ generation of conventional units without online [v_gen]
×inertia constant [unit_type: inertia constant]

+ generation from VRE units [ts_cf: time series]×capacity
×inertia constant [unit_type: inertia constant]

+ lack of inertia penalty variable [v_inertiaSlack]
>=
+ inertia limit in MWs [nodeGroup: inertia limit]

Can be applied only to
group of nodes [nodeGroup]

Transfers, 1/2

◦ Transfers between nodes are defined in nodeNode sheet
◦ Both nodes have to be from the same grid
◦ Existing transfer links can have different capacity to different direction
◦ Future investments will always have equal capacity to both directions

nodeNode sheet

Transfers, 2/2

◦ Transfer with losses requires at least two variables
◦ A linear equation with ‘loss x transfer’ would mean that in the other direction the loss is actually a

gain

◦ The loss can be used to make the model ‘leak’
◦ Instead of curtailing VRE, the model can dissipate energy by transferring in two directions at once
◦ Can be controlled only with a binary variable (not allowed in FlexTool)

◦ Hence, three variables: transfer, transfer rightward and transfer leftward
◦ Transfer does not contain loss
◦ Transfer rightward allows losses and helps to limit the leakage
◦ Transfer leftward helps to limit the leakage further

NODE Left NODE Right

v_transfer

v_transferRightward

v_transferLeftward

Transfer losses (balance equation)

Balance leftward node
+ transfer [v_transfer(g,n,n_right,t)]

minus loss ×(1 – [nodeNode: loss])
+ rightward transfer [v_transferRightward(g,n,n_right,t)]

loss ×[nodeNode: loss]

When rightward: CANCELS EACH OTHER

Balance rightward node
+ transfer [v_transfer(g,n_left,n,t)]
- rightward transfer [v_transferRightward(g,n_left,n,t)]

×loss ×[nodeNode: loss]

When leftward: ZERO

◦ Two nodes: left and right (a node-node link is established with one direction only)
◦ When transferring from left to right:

◦ Left node: transfer deducted from node balance
◦ Right node: transfer minus loss added to the node balance

◦ When transferring from right to left:
◦ Left node: transfer minus loss added to the node balance
◦ Right node: transfer deducted from node balance

Transfer constraints

Tie transfers together
+ transfer [v_transfer(g,n_left,n_right,t)]
=
+ rightward transfer [v_transferRightward(g,n_left,n_right,t)]
- leftward transfer [v_transferLeftward(g,n_left,n_right,t)]

Rightward capacity
=
+ pre-existing leftward transfer capacity [nodeNode: cap_rightward]
+ forced new capacity [nodeNode: invested_capacity]
+ invested new capacity [v_investTransfer]

Limit rightward transfer again
+ transfer rightward [v_transferRightward(g,n_left,n_right,t)]
<=
+ capacity [see orange box]

Limit rightward transfer
+ transfer [v_transfer(g,n_left,n_right,t)]
<=
+ capacity [see orange box]

And same for
leftward
transfers!!!

Concluding remarks on transfers

◦ Transfer with losses works, but the model can leak

◦ In normal circumstances, the model does not leak (why waste energy?), but the model
can use leakage instead of VRE curtailment (if curtailment has a penalty cost)

◦ E.g.,
◦ Rightward transfer = 100 MW
◦ Leftward transfer = -100 MW
◦  Transfer = 0
◦ Loss = 5 %
◦  Leakage = 100 MW × 5% = 5 MW

◦ Leakage shown in Summary sheet of Results (‘Model leakage TWh/a’)

One of the basic building blocks

◦ Units are used to model
◦ Power plants,
◦ Storages,
◦ Inflow units, e.g., hydro power,
◦ VRE units, e.g., wind and solar,
◦ Scheduled run units,
◦ Conversion units (e.g., power to heat), etc.

◦ Units are modelled slightly differently in dispatch and invest modes. Invest mode
simplifies equations, because it is much slower to solve.

Units, dispatch, main constraints and equations

Main constraints and equations for units in dispatch mode are

◦ Upward limit of generation, reserve provision, and storage charge/discharge (always
on)

◦ Four unit categories: generating unit, inflow unit without storage, VRE unit, conversion unit

◦ Online variable (activated by user). If activated, units can have
◦ Start-up costs,
◦ Minimum uptime and downtime, and
◦ Efficiency loss with partial load

◦ Ramp constraint (activated by user)

◦ Costs related to unit operations (always on, but parameters can have 0 value)
◦ Variable costs: fuel, variable O&M, CO2 cost, startup costs
◦ Fixed costs: fixed O&M

Unit category

◦ Four unit categories: generating unit, inflow unit without storage, VRE unit, conversion
unit

◦ FlexTool decides unit category based on the unit input defined in “units” sheet
◦ Input options: fuel, cf profile, inflow, input grid/node, none

◦ ST_Coal: Input from fuel -> generating unit
◦ Wind: input from cf_profile -> VRE unit
◦ Battery: no input + storage -> generating unit
◦ Hydro_RES: inflow + storage -> generating unit
◦ Hydro_ROR: inflow, but no storage -> inflow unit

without storage
◦ EVcharger: input from node -> conversion unit

units sheet

Presenter
Presentation Notes
Open input data, units sheet

Upward limit: generating units

Generating units:
+ generation [v_gen]
+ reserve [v_reserve]
- charge [v_charge]
<=
+ capacity OR [see orange box]
online capacity [v_online]

Max capacity

+ reserves

- charge

Storage charging mode:

Max capacity

+ reserves

generation

Generating mode:

OR online capacity

Max capacity

“charge”

Demand increase:

Capacity
=
+ pre-existing capacity [units: capacity]
+ forced new capacity [units: invested_capacity]
+ invested new capacity [v_invest | v_investTransfer]

Presenter
Presentation Notes
�

Model syntax example (upward limit for online units)

s.t. upwardLimitOnline {(g,n,u,t) in gnut : (g,n,u) in gnu_gen && u in unit_online} :

+ v_gen[g,n,u,t]

+ (if (g,n,u) in gnu_reserve then v_reserve[g,n,u,t])

- (if (g,n,u) in gnu_storage_charging then v_charge[g,n,u,t])

<=

+ v_online[g,n,u,t]

;

Presenter
Presentation Notes
Open flexModel.mod with a text editor to see the code. The parameters in the code are documented in the methodology report.

Inflow but no storage:
+ generation [v_gen]
+ reserve [v_reserve]
<=
+ inflow time series [ts_inflow: series]

VRE units:
+ curtail [v_curtail]
<=
+ capacity factor [ts_cf: time series]

× capacity [see orange box]

Capacity
=
+ pre-existing capacity [units: capacity]
+ forced new capacity [units: invested_capacity]
+ invested new capacity [v_invest | v_investTransfer]

Upward limit: inflow no storage, VRE

Simplified unit categories to allow faster solve time

Presenter
Presentation Notes
�

Conversion upward limit:
+ convert [v_convert]
+ reserve (to output node) [v_reserve]
<=
+ capacity [see orange box]

OR online capacity [v_online]

Max capacity

+ reserves

conversion

Converting to output:

INPUT OUTPUT
v_convert

◦ Single variable v_convert presents both directions
of the conversion

◦ In the input node, the energy consumption is
equal to v_convert / efficiency

◦ The output node energy yield is just v_convert
◦ Efficiency can be a time series
◦ Maximum capacity is limited on the input side

(units sheet capacity affects input, e.g., heat pump
with 100 MW capacity and 2.5 COP can generate
250 MW heat, but can be affected by efficiency
time series)

◦ No startups or online for conversion units

Upward limit: conversion units

Reserve provision

◦ User defines reserve capabilities of generation and conversion units in input data file,
sheet unit_type

unit_type sheet

Maximum reserve provision: generating units

Reserve limit
+ reserve [v_reserve]
<=
+ max. reserve [unit_type: max_reserve]

×capacity [see orange box]
OR online [v_online] capacity

Max. reserve

100 MW

33 MW

max_reserve = 0.33

Capacity
=
+ pre-existing capacity [units: capacity]
+ forced new capacity [units: invested_capacity]
+ invested new capacity [v_invest | v_investTransfer]

INPUT OUTPUT
v_convert

Limit for providing reserve when converting from electricity:
+ reserve (input node) [v_reserve(g,n_input,u,t)]
<=
+ convert [v_convert]

× max_reserve [unit_type: max_reserve]

Limit for providing reserve when converting to electricity:
+ reserve (output node) [v_reserve(g,n_output,u,t)]
<=
+ capacity [see orange box]

× max_reserve [unit_type: max_reserve]

Maximum reserve provision: conversion units

◦ Conversion units convert energy from
one type to another, e.g., electricity
to hydrogen or EV charger (grid
electricity to car electricity)

◦ In g,n,u,t language, conversion unit
changes energy from one grid to
another

◦ This is different from an unit that
changes energy from one node to
another (transfer link)

Inflow but no storage:
+ generation [v_gen]
+ reserve [v_reserve]
<=
+ inflow time series [ts_inflow: series]

Maximum reserve provision: inflow no storage

Inflow time series can be used to generation or reserves

Presenter
Presentation Notes
�

Storages

◦ Deciding parameter is ‘storage (MWh)’ in units sheet
◦ If ‘storage (MWh)’ has a positive value, unit has storage  Hydro_RES is storage unit and

hydro_ROR is not
◦ More details of storage can be given in unit_type sheet, e.g., charge efficiency (eff charge), storage

losses (self discharge loss), and discharge efficiency (efficiency)

units sheet unit_type sheet

Time jump for storages

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Po
w

er
 (M

W
h/

h)

Time (~5 weeks)

Selected periods

Demand

PV

Wind

◦ It is important to maintain
storage chronology when
using jumps in time

◦ In full year run, hours follow
other and storages are
optimised correctly

◦ When using jumps, FlexTool
has to follow storage values
over the jumps.

◦ Storage value optimisation
requires somewhat
complicated equations when
time jumps are allowed, see
following slides.

-50

0

50

100

150
t-1 t

state (t) =
state (t-1)
+ v_charge / eff_charge
+ inflow
- v_gen * efficiency
- v_spill
- v_state * self_discharge_loss

Storage balance equation

p_time_jump(t))

p_time_jump(t)
Storage balance
+ storage content at time t
=
+ storage content at time t-1
+ charging
+ inflow
- discharging
- spill
- storage content * self discharge loss

Additional storage constraints

Charging limit:
+ charge [v_charge]
<=
+ capacity OR online [units: capacity / v_online]

Storage start state
+ state in first time step [v_state]
=
+ parameter storage start [units: storage_start]

Storage finish state
+ state in the last time step [v_state]
=
+ parameter storage finish [units: storage_finish]

Generating limit:
+ generation [v_gen]
<=
+ capacity OR online [units: capacity / v_online]

◦ Why?
◦ Otherwise the model can curtail through losses without limit (linear storage model can

generate and charge at the same time)

Activating online variable: related parameters

◦ User activates online variables in input data, sheet master (use_online = 1)
◦ Minimum load, efficiencies, startup costs, and uptime constraints are unit type

parameters (input data, sheet unit_type)

unit_type sheet

parameter value
co2_cost 10
loss_of_load_penalty 10000
loss_of_reserves_penalty 20000
lack_of_inertia_penalty 30000
curtailment_penalty 20
lack_of_capacity_penalty 5000
time_in_years 1.000
time_period_duration 60
reserve_duration 0.50
use_capacity_margin 1
use_online 1
use_ramps 0
use_non_synchronous 1
use_inertia_limit 0
mode_invest 0
mode_dispatch 1
print_duration 0
print_durationRamp 0
print_unit_results 0

master sheet

Start-up and online variables

Startup
+ startup(unit, t) [v_startup]
>=
+ online(unit, t) [v_online]
- online(unit, previous t) [v_online]

◦ Activating online variable increases costs
◦ Start up costs (default value = 0)
◦ Increased fuel consumption of online units (default

value = full load efficiency -> no increase in fuel
consumption)

Online capacity is constrained
+ online [v_online]
<=
+ capacity [see orange box]

Capacity
=
+ pre-existing capacity [units: capacity]
+ forced new capacity [units: invested_capacity]
+ invested new capacity [v_invest | v_investTransfer]

Minimum uptime and downtime

Minimum uptime
+ online [v_online(g,n,u,t)]
>=
- sum of capacity started up [sum (t_ >= t – unittype:min_uptime & t_ < t)

during minimum uptime v_startup(g,n,u,t_)]

Minimum downtime
+ online [v_online(g,n,u,t)]
<=
+ capacity [see orange box]
- sum of capacity started up [sum (t_ >= t + 1 & t_ <= t + 1 + unittype:min_downtime)

during minimum downtime v_startup(g,n,u,t_)]

◦ Online variable is linear
◦ Not binary
◦ These limits apply to started

up quantity (in MWs)

Minimum online and generation, maximum generation

Minimum online
+ online [v_online(g,n,u,t)]
>=
+ min. online limit [capacity * ts_unit: min_online]

Minimum generation
+ generation [v_gen(g,n,u,t)]
>=
+ min. generation limit [capacity * ts_unit: min_generation]

Maximum generation
+ generation [v_gen(g,n,u,t)]
<=
+ max. generation limit [capacity * ts_unit: max_generation]

0

50

100

150

200

250

1 4 7 10 13 16 19 22

M
W

Capacity

Min. online

Min. generation

Max. generation

Unit constraints: minimum load

Minimum load:
+ generation [v_gen]
>=
+ online [v_online]

×min.load [unit_type: min_load]

Max capacity

generation

Generating mode:

Min capacity

Example unit:
100 MW_fuel max capacity,
Min load 0.33
Efficiency 0.4, efficiency at min load 0.35

V_online V_gen,
max

Eff.
(%)

V_gen,
min

Eff.
(%)

100 MW 100 MW 40% 33 MW 35%

60 MW 60 MW 40% 20 MW 35%

33 MW 33 MW 40% 11 MW 35%

0 MW 0 MW - 0 MW -

60 MW online

20MW

Min load

Presenter
Presentation Notes
Start-ups and start-up costs are calculated from v_online.
If model changes v_online from 0 to 100 MW for the example unit, the cumulative startup variable will be 100 MW.
If the model changes v_online first from 0 to 50 MW, and later to 70 MW and then shuts the unit down, the cumulative startup variable will be 70 MW.

This formulation of minimum capacity is a soft limit for the unit operation area. The unit can work with any given power (it is a linear model after all), but it will have startup costs and/or lower efficiency with partial load.

Activating ramp constraint: related parameters

◦ User activates ramp constraint in input data, sheet master (use_ramps = 1)
◦ Also adds rampRoom figures to the results

parameter value
co2_cost 10
loss_of_load_penalty 10000
loss_of_reserves_penalty 20000
lack_of_inertia_penalty 30000
curtailment_penalty 20
lack_of_capacity_penalty 5000
time_in_years 1.000
time_period_duration 60
reserve_duration 0.50
use_capacity_margin 1
use_online 1
use_ramps 0
use_non_synchronous 1
use_inertia_limit 0
mode_invest 0
mode_dispatch 1
print_duration 0
print_durationRamp 0
print_unit_results 0

unit_type sheetmaster sheet

0
10
20
30
40
50
60
70
80

t-1 t

v_reserve (t)
+ v_gen (t)
<=
p_rampUp[unittype]
+ v_gen (t-1)

Ramp

◦ Similar for downward ramp
◦ Also ramp constrained:

◦ storage units
◦ demand increasing units
◦ conversion units

◦ Charging can also be ramp constrained
◦ For storage units maximum upward

ramp could be from full charging to full
discharging
(2 ×capacity)

Unit ramp constraint:
+ reserve [v_reserve(t)]
+ generation [v_gen(t)]
<=
+ generation in the previous time step [v_reserve(t-1)]
+ upward ramp capability [unit_type: ramp_up (0-1)]

× capacity [units: capacity + v_invest]

Time serie constraints for units

Example of two units with overlapping outages

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Unit 2

Unit 1

Units with fixed generation:
+ generation [v_gen]
=
+ time series [ts_unit: series]

◦ User can give constraints to units as time series
◦ Units need to be flagged to use time series in units

sheet
◦ Time series are given in ts_unit sheet

◦ Possible time series are
◦ efficiency (works as efficiency at unit_type sheet, but

has separate value for each hour)
◦ fix_generation, min generation, max_generation (these

fix or limit the generation. Use values from 0-1 as a
share of max geration)

◦ min_online (this sets a minimum value for unit online
variable, see slide 51. Use values from 0-1.)

◦ The use of all these are demonstrated in
template.xlsm

Output_1

Fuel use

Fuel use:
+ fuel_use [v_fueluse]
=
+ 1st output×slope [v_gen(g,node1,u,t)]
+ online×section [v_online]
+ 2nd output [v_gen(g,node2,u,t)]

×fuel_use_increase [units: fueluse_increase]

[Capacity]

‘No load’ fuel use
(section)

1

slope

FUEL

OUTPUT_1

OUTPUT_2

[v_gen]

Units with two outputs

Output_1

Output_2

Fixed output ratio
+ output_2 [v_gen(g,node2,u,t)]
=
+ output_1 [v_gen(g,node1,u,t)]

×eq_co-efficient [units: output2_eq_coeff]
+ eq_constant [units: output2_eq_constant]

[Capacity]

eq constant
1

eq coefficient

Output_2 cannot provide reserve
(use output_1 for electricity)FUEL

OUTPUT_1

OUTPUT_2

Units with two outputs

Output_1

Output_2

Less than output ratio
+ output to node 2 [v_gen(g,node2,u,t)]
<=
+ output to node 1 [v_gen(g,node1,u,t)]

×co-efficient [units: output2_lt_coeff
+ constant [units: output2_lt_constant]

Upper limit for 2nd output:
+ output to node 2 [v_gen(g,node2,u,t)]
<=
+ ratio between outputs [units: output2_max_capacity]

×1st output online [v_online(g,node1,u,t)]
OR 1st output capacity [see orange box]

Greater than output ratio
+ output to node 2 [v_gen(g,node2,u,t)]
>=
+ output to node 1 [v_gen(g,node1,u,t)]

×co-efficient [units: output2_gt_coeff]
+ constant [units: output2_gt_constant]

‘lt’ constant

‘gt’ constant
[Capacity]

FUEL

OUTPUT_1

OUTPUT_2

Units with two outputs

Output_1

Output_2

Fixed output ratio
+ output to node 2 [v_gen(g,node2,u,t)]
=
+ output to node 1 [v_gen(g,node2,u,t)]

×co-efficient [units: output2_eq_coeff]
+ constant [units: output2_eq_constant]

Upper limit for 2nd node:
+ output to node 2 [v_gen(g,node2,u,t)]
<=
+ max_output_2_ratio [units: output2_max_capacity]

×1st output online [v_online(g,node1,u,t)]
OR 1st output capacity [see orange box]

[Capacity]Actual capacity

FUEL

OUTPUT_1

OUTPUT_2

Units with two outputs

Invest Run

Back to contents

Invest run

◦ Invest mode is activated from master sheet in input data (mode_invest = 1)
◦ Both invest and dispatch can be active, or only either

◦ Capacity margin approximates reserves during invest run

nodeGroup sheet

master sheet

gridNode sheet

parameter value
co2_cost 10
loss_of_load_penalty 10000
loss_of_reserves_penalty 20000
lack_of_inertia_penalty 30000
curtailment_penalty 20
lack_of_capacity_penalty 5000
time_in_years 1.000
time_period_duration 60
reserve_duration 0.50
use_capacity_margin 1
use_online 1
use_ramps 0
use_non_synchronous 1
use_inertia_limit 0
mode_invest 0
mode_dispatch 1
print_duration 0
print_durationRamp 0
print_unit_results 0

Capacity margin

For each time step:

0

50

100

150

200

250

300

capacity margin
conversion out of the node
exports
storage charging
demand increase
demand

>=

0

50

100

150

200

250

300

capacity inadequacy
loss of load
generation from output2
conversion into the node
imports
VRE generation
storage discharging
conventional capacity x availability

Capacity margin can be applied either to nodes or to groups of nodes

Limits for capacity investment

◦ FlexTool allows following definitions to investments
◦ Max invest (MW or MWh) – maximum investment allowed, works only with invest mode
◦ Min invest (MW or MWh) – minimum investment required, works only with invest mode, unit

groups only
◦ Invested capacity (MW) – predefined invested capacity, works both dispatch and invest mode
◦ Invested storage (MWh) – predefined invested storage, works both dispatch and invest mode

◦ Define fixed kW/kWh ratio for storages in unitType sheet
◦ Two of the three should be provided: [inv. cost MW], [inv. cost MWh] and [fixed kW/kWh ratio]

units sheetunitGroup sheet nodeNode sheet

Multiple constraints
• User can define multiple investment

constraints
• FlexTool will always follow all

constraints
• However, conflicting constraints will

make the model infeasible (crash)
• See slide comments for examples

Presenter
Presentation Notes
Overlapping investment constraints

For an example, user can define a
100 MW ‘max invest’ for unitGroup Wind and
10 MW ‘max invest’ for Wind in node A.
These are overlapping constraints that are both followed

Similarly,
100 MW ‘max invest’ for unitGroup Wind and
10 MW ‘min invest’ for Wind in node A.
Is also ok and both constraints are followed

Conflicting investment constraints

When defining multiple constraints, it is quite easy to create impossible situation. For an example
100 MW ‘max invest’ for unitGroup Wind and
60 MW ‘min invest’ for Wind in node A.
50 MW ‘min invest’ for Wind in node A.
Is impossible situation, the model is infeasible, and crashes.

Independent investment constraints

For an example, user can define a
100 MW ‘max invest’ for unitGroup Wind and
200 MW ‘invested capacity’ for Wind in node A.
These are independent constraints and both are followed. Invested capacity are user given investments to the FlexTool while max/min invests are model decided investments.

Costs

Back to contents

+ fixed operation and maintenance costs [capacity×unittype: fixed_cost]
+ variable operation and maintenance costs [v_gen | v_charge | v_convert×unittype: O&M_cost]
+ fuel costs of units [v_fuelUse×fuel: fuel_price]
+ CO2 emission costs [v_fuelUse×fuel: CO2_content×master: CO2_cost]
+ start-up costs [v_startup×unittype: startup_cost]
+ penalty cost for loss of load [v_slack×master: loss_of_load_penalty]
+ penalty cost for insufficient upward reserves [v_reserveSlack×master: loss_of_reserves_penalty]
+ penalty cost for insufficient capacity margin [v_capacitySlack×master: lack_of_capacity_penalty]
+ penalty cost for curtailment of VRE [v_curtail×master: curtailment_penalty]
+ penalty cost for insufficient inertia [v_inertiaSlack×master: lack_of_inertia_penalty]
+ unit investment costs [v_invest×unit_type: inv.cost_kW×annuity]
+ storage investment costs [v_investStorage×unit_type: inv.cost_kWh×annuity
+ transmission line investment costs [v_investTransfer×nodeNode: inv.cost_kW×annuity]

Operation

Penalties

Investment

Capacity
=
+ pre-existing capacity [units: capacity]
+ forced new capacity [units: invested_capacity]
+ invested new capacity [v_invest | v_investTransfer]

Objective function: minimise costs

◦ Each model run minimises costs of
following equation:

Cost parameters

◦ Cost parameters are defined in:

master sheet

unitType sheet

fuel sheet
Penalties Operation

Operation + investment
nodeNode sheet

Operation + Investment

Operation costs

◦ Fixed operation costs:
◦ Fixed O&M

◦ Variable operation costs:
◦ Variable O&M, fuel, CO2 cost, startup costs
◦ Scaled to annual level if running less than

full year

◦ Scaling to annual costs is done based
on
◦ Amount of active timesteps
◦ Total number of timesteps
◦ Time_in_years parameter at master sheet

Variable costs =
(+ generation x O&M cost
+ fuel use x fuel price
+ charge x O&M cost
+ fuel use x fuel CO2 content x CO2 cost
+ number of start ups x capacity x startup cost

) * scaled to annual

Fixed costs =
+ capacity x fixed O&M

Capacity =
+ pre-existing capacity [units: capacity]
+ forced new capacity [units: invested_capacity]
+ invested new capacity [v_invest | v_investTransfer]

Penalties costs

◦ The model tries to avoid very high penalty
values
◦ Seeing loss of load in result is a sign of significant

flexibility issue
◦ Curtailment penalty should be much lower than

loss of load penalty. Default value is 20, but it could
also be close to zero.

Penalties =
+ penalty cost for loss of load [v_slack×master: loss_of_load_penalty]
+ penalty cost for insufficient upward reserves [v_reserveSlack×master: loss_of_reserves_penalty]
+ penalty cost for insufficient capacity margin [v_capacitySlack×master: lack_of_capacity_penalty]
+ penalty cost for curtailment of VRE [v_curtail×master: curtailment_penalty]
+ penalty cost for insufficient inertia [v_inertiaSlack×master: lack_of_inertia_penalty]

Investment costs

+ unit investment costs
[v_invest] ×[unit_type: inv.cost_kW×annuity]

+ storage investment costs
[v_investStorage] ×[unit_type: inv.cost_kWh×annuity

+ transmission line investment costs
[v_investTransfer] ×[nodeNode: inv.cost_kW×annuity]

In objective function:

In the [unit_type] sheet:

More information

Back to contents

More information

◦ More info from FlexTool methodology report

◦ IRENA FlexTool Support: Flextool@irena.org

English Spanish

mailto:Flextool@irena.org
https://irena.org/publications/2018/Nov/Power-system-flexibility-for-the-energy-transition
https://irena.org/publications/2018/Nov/Flexibilidad-del-Sistema-Electrico-Para-la-Transicion-Energetica

www.irena.org

www.twitter.com/irena

www.facebook.com/irena.org

www.instagram.com/irenaimages

www.flickr.com/photos/irenaimages

www.youtube.com/user/irenaorg

	Slide Number 1
	Slide Number 2
	Major Assumptions
	Slide Number 4
	Perfect vs. uncertain forecast
	Linear vs. mixed integer modelling
	Solving the problem
	Cost minimisation
	Building Blocks
	Slide Number 10
	gridNodes
	One of the basic building blocks, 1/2
	One of the basic building blocks, 2/2
	Demand of each node
	Energy balance equation
	Reserve requirements: Static reserves
	Reserve requirements: Dynamic reserves
	Upward reserve requirement: single nodes
	Upward reserve requirement: groups of nodes
	Further reserve limits
	Maximum non-synchronous share, 1/2
	Slide Number 22
	Minimum inertia limit, 1/2
	Minimum inertia limit, 2/2
	Transfers, 1/2
	Transfers, 2/2
	Transfer losses (balance equation)
	Transfer constraints
	Concluding remarks on transfers
	One of the basic building blocks
	Units, dispatch, main constraints and equations
	Unit category
	Upward limit: generating units
	Model syntax example (upward limit for online units)
	Slide Number 35
	Slide Number 36
	Reserve provision
	Maximum reserve provision: generating units
	Slide Number 39
	Slide Number 40
	Storages
	Time jump for storages
	Storage balance equation
	Additional storage constraints
	Activating online variable: related parameters
	Start-up and online variables
	Minimum uptime and downtime
	Minimum online and generation, maximum generation
	Unit constraints: minimum load
	Activating ramp constraint: related parameters
	Slide Number 51
	Time serie constraints for units
	Units with two outputs
	Units with two outputs
	Units with two outputs
	Units with two outputs
	Invest Run
	Invest run
	Capacity margin
	Limits for capacity investment
	Costs
	Slide Number 62
	Cost parameters
	Operation costs
	Penalties costs
	Investment costs
	More information
	More information
	Slide Number 69

